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INTRODUCTION

Recent interest in piezoelectric materials stems from their potential applications in
intelligent structural systems. A comprehensive list of works in this area may be found
in[1~4] and the references cited thereby. The rapid development of computer science’ and
the finite element applications reveals the importance of searching for a classical variational
principle for the thermopiezoelectricity, which is the theoretical basis of the finite element
methods[5] and meshfree methods[6].

A GENERALIZED VARIATIONAL PRINCIPLE

Though it is easy to establish a Gurtin-type functional(involving convolutions), it is very
difficult to construct a classical variational model due to the strongly coupled constitutive
relations and the terms of the first-order time-derivativés involving in the heat conduction
equation. As the author knows, there exist no such classical variational models for the
thermopiezoelectricity, the semi-inverse method[6~9] that we are proposing appears to be
one of the best and most convenient ways to establish variational principles for the physical
problems. By such method we obtained following generalized variational principle with 9

kinds of independent variations (stress & j» strainy ij » displacement u;, temperature 6,

heat flux g; , electric displacement D;, electric field E i » electric potential @ and entropy

S)
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where t'=t—t(n~l), te[t(n_l),t(-”)], A is a nonzero constant, ¢ and B are
written in the forms

o= ceoe(n—l) +by~yl(j"—l) T cl_Ei(n—l) + f'pQ and fB= Kiiji(n—l)_

Ay + Ay = A3+ Ay = A5+ Ag + A7 = A covers the total boundary surface.
Making the above functional stationary, we obtain -fo]ldwing Euler equations

ou; : o;;+/fi =0 (1)
67,]- Sediiae i s em,-jE +b,.j0 —ZAb,-j (pS—cO-b,,7 un — cnE ) =0 (3)
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86: D=0 (©)
D, E =0, ™)
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and following boundary conditions

U =u; (on  4)) (10A)
O;n; = p; (on  4,) (10B)
d=0 On . 43 (10C)
D, =D, (on  4,) (10D)
0=0 (on  A) (10E)
qin; =4, (on Ag) (10F)

The equations (3) ,(4), (8) and (9), in view of the equation (2), can be re-written down as
follows

O =AY ki — emjEm — b0 . : o
. oyl (n-1)
6= HEY Vij yt(jn E; —E
(n-1)
= qi — i ,

When ¢ — ¢t(*D , we have

d0 I i JE;
0p—+b, —+c,—L =g, . + S
Yy ot ij ot ¢ ot qi; pQ : (8)

13
6, ="Kij(7%+qi) : )
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or

aq 99

where 6 =T -6, T is the temperature and B¢ is the initial temperature , Q is the
strength of the internal heat source, Kii is the inverse of kij~

The obtained Euler equations satisfy all the field equations and boundary conditions of the
thermoelasticity of piezoelectric materials.

CONCLUSION

Hereby we obtain a variational principle for the discussed problem, which might find some
potential applications.
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