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Abstract: Traditionally, rotation-modified higher order
turbulence models are used in simulation of florv
through rotating channel. In modeling two-phase flow,
prediction of the corresponding single-phase flow is
usually an important pu.t of the overall iteration
process, Thus, every effort is made to reduce
computation time during this part of the solution. With
this view, this study employs a rotation-modified eddy
viscosity to predict developing mean flow in a rotating
channel. Furthermore, in contradistinction with the
usually employed parabolic or partially parabolic
methods, this study employs an elliptic method.
Galerkin finite element method with bilinear velocity
interpolation and constant pressure is used. Combined
quasi-NeMon's iteration enables the simultaneous
solution for velocity and pressure fields. 'the effect of
wall functions (with and without modification for
rotation) on the friction velocity is presented. Results
with modification for rotation compare favorably with
experiments, while those with standard wall functions
do not.
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INTRODUCTION

In a rotating channel, the Coriolis force has three effects: (l) development ofa cross-stream
pressure gradient, (2) occurrence of a secondary mean motion, and (3) modification of the
turbulent mixing process. Even for a relatively small rotation number (Rot, =t (/0f H ,

where is the angular velocity of the channel, Uo is the inlet mean veiocity, and ll is the
heigh_t of the channel), the Coriolis force induces instability (stability) on the pressure
(s-uction) side boundarylayer [1]. The differential experience oirotation on the rwo sidesof the channel modifies the turbulent mixing process and causes stabilization (or
destabilization) of fl ow.
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Numerical prediction methods [2-5] have primarily relied on parabolic or partially
parabolic procedures due to the relatively higher computational cost of elliptic methods.
Due to the possibility of secondary flow, the numerical method (whether parabolic or
elliptic) must, in general, take the three-dimensionality of the flow into consideration. In
addition, it turns out that the standard k- or mixing length models have to be modified [3,
6] to account for rotation effects on turbulence in order to reliably predict the observed

asymmetry. Richardson number [] is a useful parameter in developing such Coriolis-
modified turbulence models for rotating flows. Nonlinear Reynolds stress-mean strain rate

relationship significantly improves secondary flow prediction for low-aspect ratio ducts [4].

For ducts with an aspect ratio of 7: I or larger, practically no secondary flow occurs [7]. In
such cases, the flow may be treated as essentially two-dimensional. Thus, fully developed

flow in rotating channel has been studied [8] to test the performance of second-moment
closure models. The cost effectiveness of a two-dimensional model is particularly
attractive when dealing with computation-intensive simulations of two-phase flow through
rotating channels. In two-phase flow problems, the corresponding single-phase flow
solution is an important part of the overall iteration process [9]. In a recent study, two-
dimensional (elliptic) prediction of inviscid free surface flow in a rotating channel [0] was
reported. This method was extended to viscous free surface flow prediction in a rotating
channel I l].

An important extension of [8] is the prediction of two-dimensional developing flow in a

large-aspect ratio duct. This less-attended problem is the subject of this study. Generally,
finite volume or finite difference methods are used for rotating flow problems. This study
departs from this trend by employing a Galerkin finite element method. The Reynolds-
averaged Navier Stokes equations governing two-dimensional developing flow in a rotating
channel (with a large aspect ratio) are cast into weak form using Galerkin finite element
method with primitive variables. A rotation-modified eddy viscosity model is used,

keeping in mind the extension of this study to two-phase flow. Wall functions with and

without modification for rotation are used to compute the friction velocity, which appears

in the expression for eddy viscosity.

MATHEMATICAL FORMULATION

In Figure l, a channel rotating about the z-axis is shown with uniform inflow. The
continuity and momentum equations goveming steady, incompressible flow in a rotating
frame ofreference are presented in [2]. From these, the Reynolds-averaged equations in a
rotating reference frame may be obtained fol.lowing the standard procedure p3]. The
Boussinesq approximation governing mean rate of strain and Reynolds stress is used to
introduce an eddy viscosity into the equations.

38
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The final governing equations are programmed in non-dimensional form. Mean velocity
components U and V (in the x and y directions, respectively) are non-dimensionalized with

respect to the uniform inlet mean velocity, Us; meari pressure, P, with respect tn pU: @

being the density); O (angular velocity) with respect to Urf L; and all lengths with

respect io channel length t. Thus in non-dimensional form, the governing equations are

AU AV

=-+;_ = U, (1)
dx dy

uY*vau ={tzx+zav +L(2a du -p')*i9 (Y.an )^ o\dx Ay dx(Re Ex ) ay Rel dy d, I
and

uL*vav ={!2v-zou +LL(y*y)-'qf?g9l-"). (3)
Ex dy Dx Rel dy d* ) Exl Re Dy I

where Re = 
pU|L 

is the bulk flow Reynolds number, and a is the ratio of total viscosity
p

(turbulent + laminar) to the laminar viscosity.

The eddy viscosity for a rotating flow must be specified carefully. The Coriolis body force
in a rotating channel is analogous to the centrifugal forces associated with curved
streamlines and buoyancy forces in density-stratified flows. Based on this similarity, a
gradient Richardson number is defined [14] as

39

Figure 1. Schematic of flow through rotating channel.
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The computational exit is located a little distance, M, downstream of the actual channel
exit ( x = I ). Thus, zero4radient boundary conditions may be applied at the computational

exit without introducing significant error. For turbulent flow simulation, along y =l+,
wall functions, as shown in Equation (l l), may also be used.

NUMERICAL METHOD

Gdlerkin formulation [7] is used to transform the governing equations into algebraic fortn.
The velocity components, U and V, are interpolated bilinearly using 4-noded quadrilaterals,

and pressure is taken as constant within each element, e. Thus, if ly', are the velocity

interpolation functions,

4

U(") (*,y)=>NiUi,
i=l
4

vk) (*,y)=ZN,v,,
j=l

and

P(") (*,y)= Pk) = constant,

where U, , V, are the nodal values of U, Zrespectively.

The weight function for the pressure residual is simply unity, so that the pressure residual
(corresponding to the continuity Equation (l)) is

Rp= ll+.+]rn,",, (17)' ,irl a' ay J 
--

*h.r. C)(') is the element area.

Similarly taking N; as the weight functions, the residuals for the momentum
Equations (2-3) are

^,, 
=J, * 

{[" #., #)- (n, * + zar)l a at"\

- 
n{",', l*(##- 

p)+ 
*x''(#* s)aot"r, 

(r8)

and
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dy
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Ri = -2Q ,S(S + 1)
(au \
[;;J

Depending on whether Ri

destabilization would occur.

wall.

defined as

.,* - lur
-v --r

1)

u"berng the friction veiocity. Equation (6)

A.842 <2, I H ( 1, with i = y + H 12 .

of 1)" at 2i I H = 0.158 is used.

is greater than or less than zero, local stabilization or

For turbulent flow, Ri = S , since I t, very large near the
dy
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(5)

is an empirical constant, and y" is

(6)

is used when 0 <2ilH < 0.158 or when

When 0.158<2ilH <0.842, the value

40

(4)

Following the conclusions of I and 3], Rl is introduced to modi$r (for rotation) the eddy
viscosity expression for stationary pipe or channel flow. The eddy viscosity for flow
through stationary channel may be specified via a mixing length [13]. However, it is found
convenient to use a Van Dreist-type direct expression [15] for the effective kinematic
viscosity, U" , as

[,.@]
2

where 0 is the laminar kinematic viscosity, r= 0.4

In this study, Equation (5) is modified for rotation introducing Rl. Thus, the viscosity ratio,
a is taken as

lffilI 1 4*'v*' h-r-'''u1' 1ll+^ll* ' , ' I

I V Q+BRi)" I

- _L )u:- (7)2'
where B is an empirical constant. In this study, it is found thar the choice of p = 2 yields
results, which compare well with experiment. For laminar flow, Equations (1-3) are
applicablewith & = l.
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^, 
= 
J,", {[r # ., #]- t*2 

y - 2d>(J)] rr,,",

.t
- J,,r,t*#(#.#).*(#X-,laot"r 

(re)

In Equations (18-19), the second order derivatives of U and Vdemand C(l) 
"l"rnents. 

Io

order to enable the use of C(o) elements, and simultaneously to invoke any Neumann
boundary conditions, the second integrals in Equations (18) and (19) are integrated by parts
to yield

R,, 
J, ", {[r * ., #]- (n," + 2dtr)laar"t

.J t* (##-"). Y+(+.#)|,",'' .8a,

- 
J, ", Iw* -,).. . #,(#. Y)",Idtk),

and

^,, 
= 
J,n {[" # ., #)- (n', -zou)]aot'r

.J{*#(#.#).#[#s-"]"r;, ('ea,

- J, r, IX(#.#)";, 
.(tn# - r),,|arr"t,

*here I-(") is the element boundary which coincides with a portion of the domain
boundary with specified stress boundary conditions and n, and n, are the direction

cosines of the outward-directed unit normal to f(") .

In the present problem, only along the exit, there are Neumann boundary conditions. Along
the exit, fr, =l , and n, = 0 , the boundary conditions (13c) are applicable. Therefore, the

boundary terms in Equation (l8a) vanish. In Equation (l9a), the surviving boundary term
is
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I N, o du drk)
J", ' Re dY

X$) ={ryr@ ,r@ ,r@f-t -)
be the vector of the field unknowns at all

5X$) may be obtained as

lol{axrrt }= -{rf 
)};

where

[g]=

dEu

aY

dg,
aY.
04"
AV
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(21)

nodes at /' iteration. The correction vector

(2sa)

(2sb)

(20)

The set of non-linear algebraic equations is solved for the nodal unkno'wn, U, f andP
using combined Newton's iteration technique. The combined Newton's method requires the

derivatives ofthese residuals with respect to the nodal values ofthe nodal unknowns {,
V, and P,.

(22)

(23)

(24)

E4" I
aPl
,&l
aP I'
a&l
atl

and

trr ={tr{, tl ri]'

laB,
lau
I ur,
lau
lr+
La,/

The derivatives required in Equation (23) are calculated analytically as

dRr = ldN,dtt")du, 
.,.1., 

Dr "--- '

dR" = i 
dN;7g2t"1.

dv, ,1,, dY
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3R, -.'
--\,.dP,

r,t(N du *,dN'*,r9L)'f'dx 0x ay)
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(25c)

(2sd)

(25e)

(2sf)

(25h)

(2si)

ER, I
dU, .,{',

d{tk) ,

d{tk) ,

, a ( .aN, aN, , aN, aNi )
7-l R"[ Dx Dx dy ay )

+ =J 
[*^, tY ").#[#*)]"'',,

dRu, 
=- ; dN,7gt"l

aP ,r{., a" '^-- '

W 
= 
J,[' * (K.* ). *" [# * ),o",

dRr, _ |
a\ - J",

"[*{.,*.,+)
, a (aN, aN, , . aN, aN, )-Rr[ a" ar -' ,, v )

and

aK 
=_ 1dN,4g2t"t.ap 

,r.1", 
dy

-Jn, #ffonn, (zse)

In these equations, a is treated as a constant in carrying out the differentiation. Hence
quadratic convergence properry of Newton's method is affected, especially in the initial
several iterations.

on" X&) is available at /' iteration, th.n X(k*l) is obtained as

lo,u,/'o'f
y(*+t) = y(k) +),a,64$) l,

[o'artorJ
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where A,r,d1,,do are, respectively, the under-relaxation factors for QrV andP. the

correction vectors 3U$) , \VU) and 6P(e) are obrained by solving Equation (22), For
convergence, a tolerance of l0-s on the infinity norm ofthe correction vector is required.

The linear matrix Equation (22) is solved by using a RAM-based frontal solution rechnique
[18]. The advantage of this rnethod is its efficient operation, requiring less computation
time than the classical frontal method [l9]. All integrals in the element equations are
computed using 2x2 Gauss quadrature [7]. Parameter continuation in rotation number is
rrsed. Solution at a lower Ro n is used as the initial guess to obtain the solution at a higher

R:on .

The computed pressure field is, by choice,
example, a'least squares procedure [17] to
pressure for each element.

RESULTS AND DISCUSSION

46

discontinuous, and must be smoothed by, for
obtain the nodal pressures from the values of

Practically identical results were obtained far Re, =1i500, Ro, =0.069, with
100x16, 150x24 and200x32 elements, with srnooth grading in both directions. A typical
quasi-Newton iteration takes 1.4 s for the l00xl6, 5.5 s for the 150x24 and 14.5 s for the
200x32 on a I GHz Pentium III cornputer. For all three meshes mass conservation was
satisfied to numerical precision. In other words, mass flow rate calculated at any -r was
practically the same as that at the channel inlet.

Figure 2 shows the effect of mesh refinement on velocity and pressure for Re, = 35000
and Ro, =0.069. InFigure2(a),thestreamwisevelocity, (J,along(i)thecenterline,
(ii) the nodes adjacent to the suction-side wall (SS), and (iii) nodes adjacenr to the pressure-
side wall (PS) are shown. The maximum difference in velocity between the 100x16 and the
200x32 mesh is about 2Vo. Similarly, Figure 2(b) shorvs the pressure distribution for rhe
three meshes. Results are seen to practically coincide for all three meshes. The velocity
profiles at x = I (the expected fully developed position) for the three meshes are also seen
in Figure 2(c) to practically coincide. The pressure profiles at x = 1 for the three meshes
show acceptable level of differences. Thus, due to its computational economy, the l00xl6
mesh is used in all subsequent calculations
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arc zero. Thus, the pressure profiles meet the suction- and pressure-side walls at

48

In the fully developed region (x - 1), the pressure profiles of Figure 2(d) are nearly linear

r*".pt for a small 
'AirtunJ" 

close to itt. *utt. Close to the wall, the strearnwise velocity' U

decelerates, and hence there is a decrease in the Coriolis acceleration, zAU ' Right at the

wall, due to the no-slip condition, the Coriolis acceleration and hence the pressure gradient'

AP
=-,dy
right angles. For turbulent flow. the velocity U quickly reaches the free stream

distance from the wall increases, and thereafter, there is no significant change

value as the

in ZQU .

Thus, the pressure profile is nearly linear

channel height away from the walls.

Figure 3 shows the velocity vectors and pressure contours computed at R-e, = 11500

(Ron=0'069,0.21;andR",=35000(Rou=0,042,0.069).Foreasy
comparison, dimensional values of velocity (m/s) and pressure (N/m2) are shown'

Naturally, as the Reynolds number increases (compares Figures .3(a) 
and 3(d)), the. U

centerline velocity increases. For the same Reynolds number, increasing the rotation

number does not result in a significant change in the centerline velocity (although certainly

there is asymmetry as seen fr"om the velocity vectors at a given x and as shown in Figure

ztrlj. go*"u.r, u, the rotation number increases, at any given ;r, the pressure increases

uppro*i*ut.ty as the square of the rotation.number. The pressure contours slant to the

|igit, again confirming that there is a positive pressure gradient from the suction to the

pressure side ofthe channel'

In addition to the consistency of results from mesh reftnement, these physically intuitive

results add confidence in the predicted solutions'

Figure 4 shows the variation of friction velocity (at 'x = 1 ) at the walls as a function of the

rotation number for Re, =35000. Friction velocity is computed using the "law of the

wall,'modified for rotation (Equation (ll)). The friction velocity is normalized with

respecttothefrictionvelocityforzerorotation' Thus,at Ror=0'theratio' u,fu'o is

unity in Figure 4. The friction velocity on the pressure side reaches. an asymptotic value.of

about 1.17, while on the suction side the friction Velobity continues to decrease with

increasing rotation number. Similar trends of numerical predictions are also reported by [3-

4,8.l.

Q " , Yy 
is constant) for most part of the

Journql ofMechanical Engineering Research and Developments. vol.22-23' 2001
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Rc,, = I1500 Ro,,= 0.21

L= I

Rc,,=11500 Ro,,=0.069

t. = I

0.256 ws 259 m./s

(a)

Rc,, = 35000 Ro,, = 0.042

L=l

(c)

Figure 3. Dimensional velocity vectors and pressure contours for several values of Rerr and Ro,,.

Friction velocity values from the experimental data of [1] are also shown in Figure 4 for

comparison. The results agree well for the large Reynolds number experiments. The low-

Reynolds number experiments are not expected to agree well, especially on the suction

side. Johnsto n et. al. I I ] indicate that at low Re, , therc is a tendency for re-laminarization

of the boundary layer on the suction side. This cannot be picked up by the present eddy

viscosity and wall function model, which are only valid for turbulent flows. On the

pressur; side, there is no re-laminarization, and hence the present results agree well with

experiment.
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Present developing flow
computations with rotation-modifi ed
wall functions.
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O Experiments [1]

I Low-Re experiments Il]

50

0.15 0.2 O.2S 0

Ro,

Figure 4' comparison of computed friction verocity with experiments Il].

Finally, in Figure 5, the friction velocities computed with and without rotation modification
(Equations (9) and (l l)) are shown. For comparison, results using the lin"u,. uppro*imation
of Equation (8) are also shown. It is seen that when rotation mJdification is'not used, onthe pressure-side, friction velocity reaches a lower asymptotic value of about 1.14, which
agrees better with the computed results for fully oeveiopia flow [g] using second_moment
closure model. However, without modification for rotation, the suction side prediction also
reaches an asymptotic value of about 0.8. This is not in good agreement with experimental
observations. The use of 

.the linear approximation of Ef,uation"(8) predicts an asymptotic
behavior of friction velocity on both sides, with lower asympaoii" rur-""r than when wall
functions are used. The conclusion is that much fineg grid lnear the walls) would be
necessary to make the linear approximation viable. In praciice, such fine meshes would notonly involve significantly large computer time, but tliey .nigirt also introduce difficulties
with convergence.
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---€-- Equation (8)

- -o - Equation (9)

---v-- Equation(ll)

-_E--
:'4-:'= --- --6--'--

----+------+-

------+_
'--- --o*'\n\ -

.F -e--

-v-

o'oo'
0.05 0.1 0.15

Ro..n

5l

1.2

o.2 0.25

Figure 5. Effect of rotation-modification on wall friction.

CONCLUDING REMARKS

The simple rotation-modified eddy uiscosity model, combined with rotation-modified wall
functions considered in this study seem to perform well in predicting the developing
velocity and pressure fields in rotating channel with suffrcient fidelity for engineering
purposes. In particular, this conclusion is likely to be useful in computation-intensive
problems involving two-phase flow through rotating channels. Experiments indicate that

the pressure-side friction velocity approaches an asymptotic value beyond RooJ0.l ,

while on the suction side the friction velocity continues to decrease without an asymptotic
limit. This trend is well captured by the present simulation. The present study also lends
confidence in the efficient use of the hitherto less used finlte element methods for this class
of problems.

In the present study no-slip boundary conditions are used at the walls of the channel. Wall
functions are used to compute the friction velocity, which appears also in the calculation of
the eddy viscosity. An interesting and useful extension of this would be to introduce wall
functions in specifying boundary conditions as well. This is the subject of a separate paper.
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NOMENCLATURE

Note; All quantities used in the paper are dimensionless, unless otherwise mentioned
explicitly in the text.

English

H Height of rhe channel

L Length ofthe channel

Ni Velocity interpolation functions

. ftr,frr, Direction cosines of unit normal vector \

P Mean pressure

lQl Jacobian matrix

Re Bulk flow Reynolds number

R"n Height based Reynolds number

Ri Richardson Number

Ro, Height based rotation number

Ro" Rotation number based on distance r from origin

Ru,Rv,R, Residuals in Galerkin Weighted Residuals Method with respect to

U;, Vi, P respectively

Vector defined in Equation (24)

A dimensionless parameter (Equation 4)

Mean fluid velocity in x-direction

Inlet mean velocity i

Friction velocity

Mean fluid velocity iny-direction

<t

8,
s

U

uo

ux

V

I

I
I
I
I

i

I

I
I

I
{
It

''..,I-t
i
l

'
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4
xyz

i

Greek

a,

auauap

p

v

p(e)

K

lt
p

Tw

1)

7)"

Cl

g2(e)

t)
=

=

Vector defined in Equation (22)

Coordinate system attached to rotating reference frame

y+H12

Ratio of total viscosity (laminar + turbulent) to the laminar viscosity

Under-relaxation factors

An empirical parameter (see Equation 7) _

Empirically determined function (see Equation l3)

Element boundary

An empirical constant (see Equation 5)

Laminar viscosity

Fluid density

Shear sffess at the wall

Laminar kinematic viscosity

Effective kinematic viscosity

Angular velocity

Element area

Column vector

Approximately equal to

Is defined as

a
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Subscripts

i, j, k Dummy indices

Pagalthivarth"i and Gupta

Superscripts

+ Non-dimensionalization defined in Equations (6) and (10)

{e) Quantities pertaining to an elernent

(f) Quantities at the kth Newton's iteration
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