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Abstract: The purpose of this numerical study is to
study the spatio-temporal dynarnics of an

incompressible Bousinessq, low Prandtl number (Pr=7)
fluid confined in a two-dimensional enclosure. The
non-dimensional equations in primitive variables that
govem the transport of rnass, momentutn and heat have
been solved numerically using second and fifth-order
accurate upwinding in space and first order accuracy in
time. Due to the non-linearity of thennal boundary
conditions, introduced by spatially discrete periodic
heating and insulation, spatial asyrnmetricity in pattern
of streamline rolls and isotherms as well as ternporal
asymmetricity in the form of quasi-periodicity appears
at lower Rayleigh nurrber compared to standard
Rayleigh-Benard problem. The density circulation
effect gets enhanced with increasing Rayleigh nurnbers
and this in turn significantly reduces the vertical heat
transport as well as results in breaking up ofalternately
larger and smaller rolls into a mr.rlticelluiar convection.

INTRODUCTION

Most of the researchers have investigated the standard Rayleigh-Benarcl (R-B)
phenomenon either in cubical enclosures or circular cylinder enclosures with absolutely
uniform temperatures on the top and bottom horizontal boundaries. The fixed boundary
condition of temperature has been studied in detail by various researchers, both
experimentally by Koschrneider [], Gollub and Benson [2], Behringer and Ahlers [3], etc
and numerically by Cuny et. al.[4], Mukutmoni and Yang [5], Stella et. al. [6] etc. Both
Gollub and Benson [2] and Mukutmoni and Yang [5] found that the preferred route of
transition' from laminar to chaotic state is Ruelle, Takens and Newhouse [7] route if
asymmetric boundary conditions are maintained and Feigenbaums' [8] period doubling
route if special symmetry conditions are imposed numerically.

The presence of systematic non-uniformities on the horizontal boundary produces a

horizontal pressure gradient in the fluid, because the hydrostatic pressure under a warm
fluid colurnn is smaller than the hydrostatic pressure under a 'cold fluid column of same
depth. That means the fluid will move from higher pressure to lower pressure regions,
independent of the magnitude of the vertical temperature gradient, even with stable
stratification. So the circulation generated by the vertical temperature gradient will be
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nonlinearlysuperimposedonthedensitycirculation,whichfinallyintroducesan
orientation into the fluid layer which is tikely to ctrange the scenario of the patterns that

one finds on a uniformly heated plane'

The investigation of convection with non-uniform heating began with an experiment of

Koschmeider [9]. The u*ir'*tt"i. radial temperature gralclieni on bottom plane results in

circulation given by ,fii.,*;;ii"*"* b"t*..n ih. *utt and cold fluid columns'

Asverticalinstabiiityisalsopresentinanon.uniformlyheated.fluidlayer,eachsecond
convection roll will ,"* i" " iii".tlon opposit" to the motion of the density circulation;

eachsecond,otti,tt,",,ro,.-,,*tt.,thanitsneighborwhichturnswiththedensity
circulation. rni, patteri Ji.o[, p"oitts till moderately supercritical conditions'

Furtherriseinradialtemperafuregradient.resultsinconvectionrollschangingthe
orientation of their u*.r-'dt- tf,e a'zimuthal to radial direction' The only other two

experimental lnu.rtigJo;; R--B convection with non-uniform temperature on the

horizontal boundaries "r. 
ifur" g"*ovsky and Fertman [10] and Srulijes [ll]' both made

with rectangutu..ontuin-r.r. 
--in 

sruri:es ul] experiments on the top as well as bottom

boundaries had the ,u*" iin.u. horizontai tem;;;t. gradient and.resulted in pattern of

alternately lurg", unj'-r;;li;r ;"ilr. Weber tl2,ltl studied theoreticallv the two

dimensional ,ur. *ith u 
"onr,.n, 

Eo/Ex on the tottom and a uniform 0 0n top wall'

assuming loe/Exl << 10e/ay1. He sh.owed that the onset of convection in the presence of a

horizontal ,.Inp"ru,*. 
-*iidient 

wiu take place at a Ra number larger than the critical Ra

on a uniformly heated;ffi;'il;;*g ,'nit 1o tt'e density circulation which reduces the

vertical temperature g'JO;nt'unO thus making the fluid layer more stable'

our aim of investigation was to observe the spatio-temporal changes in a square enclosure

with increasing nu n,rirt., Lui utro to anatyie the character of transition from laminar to

highly aperiooi. nutuiui convection that occurs in the presence of discrete spatially

periodic heating "" 
d;t;;;horizontal plane, *tti"tt iniroduces.a nonlinear horizontal

temperature gruai"nt.-io-,r," p."r.n, tno*t.ag. of a_uthors,. this type of boundary

condition has not been investigated by uny ,lrrir"t]er. In section 2 we summarize the

dynamical equations unJ nu..-ri"al scheme employed in our an_alysis. In section 3 the

states of medium Pr number (Pr-7.0) ZO .onue"iion are studied' ln section 4 conclusionp

ur. O.u*r, and future scope of work discussed'

MATHEMATICAL FORMULATION

Thenon.dimensionalequationsinprimitivevariablesthatgovernthetransportofmass,
momenrum and heat il;; incompressibt, el;rin"*tq nuio can be written in weak

"onr"*utiu.forminatwo-dimensionalCartesiancoordinatesystemas;*; *Ev1Ey = o -'-" :' : , :--;- ll]ilil . a"tla- + Euv/dY : -DP/Ex + Pr V2u

dv/Dt + Euv/Ex * a,iiai= -;Pbv + PrV2v + Ra Pr 0 (3)

EO/PI + du0/Ex + dvO/EY: V20 (4)
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The Poisson equation for pressure is given as

Y'p= -dD/Dt - 2 d2uvidxdy -dzu2lax'-azvzldy? + PrV2D+ Ra PrDgidy (5)

where Ra = agH3ATivx, The flow is assumed to occur in a square enclosure in the-region

0<x<H and 0SySH. The reference length, velocity and time used are H, dH and H2lr.

No-slip boundary conditions are employed for u and v on all the walls. 0 is assumed to

satisfy conducting boundary conditions on the top and discrete portions of bottom heated

plate, while the Neumann boundary condition E0/0x = 0 is assumed for the insulated side

r.Mlls (see Fig.l). The perturbation in temperature in the fluid is provided by the

temperature gradient due to unit time the fluid needs to acquire the adjacent wall

temperature. The boundary conditions used are :

0= 1.0 on portions AB, CD and EF (heating portions)

00/dy: 0.0 on portions BC and DE (non heating portions)

0=0.0 on top wall GH
DO/Ex = 0.0 on vertical walls AH and GF
u,v = 0.0 on all the walls

U=t'Efl 0 = 0

2t

Glt

U=!EO

6ff6x=0

U=1FO

firli fix=l-l

A E C D EF
t---l

Fig. 1 Physical domain of the problem.

The nonlinear terms in eqns. (2) to (4) are evaluated using second order upwinding in

space i.e. Leonard's [14] QUICK scheme or fifth-order upwinding as used by Rai and

Moin [5]. The diffusion terms are discretized using the three point central differencing
stencil, while the time integration has been performed explicitly (Euler's scheme) in order
to capture the unsteady physics especially of the oscillatory flow regime. The Poisson eqn.

for pressure (5) has been solved using Strongly Implicit Procedure (SIP) till a L2-norm

tolerance limit of 10-6 is reached (for non-dimensional pressure values of the order of
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l0r2;. The above method has been implemented on a 54*54 orthogonal, non-uniform,

collocated mesh with a minimum and maximum grid spacing of 0.004 and 0'04 in either

directions respectively. The time integration was performed for 100 to 250 seconds in

physical time using a variable dimensional time step of order of l0-'at low Ra flows and

l0-6 - l0-7 at high Ra flows. The time histories of dynamical variables like u,v and 0 are

recorded at two foints shown as (a) and (b) in fig. l. The coordinates for these points are

(0. 1, 0. 1) and (0.5, 0.5) respectively.

For spectral analysis of tirne series data, codes were developed to calculate power

specrrum using Entropy method, Press et al. [6] and Phase Portraits as given in Gollub

and Baker [ 7], etc.

TIME DEPENDENT CONVECTION

The developed code has been validated rvith the numerical results of Nonino et.al [18] for

2D differentially heated square cavity problem and an error in between l'2o/o is obtained

for velocities and Nusselt numbers at the heated wall for Ra:105 to 107 as shown in Table l.

Table I . Validation of code with numerical results of C. Nonino et. al[ I 8]

Ra lVl'u* U.u^ Vnrr* Nu^'n Nu.^* Nur'n Reference

t0' 9.67 35.21 69. l0 4.52 7.68 0 .74 present

l0' 9.62 34,75 68.65 4.52 7.73 0.72 u8l
10" 16.89 66.11 222.77 8.82 t7.49 r.00 oresent

10" 16.82 64.83 220.63 8.82 17 .56 0.98 181

t0' 31.40 rs223 708.s4 t6.2s 38.98 r.38 present

l0 30.1 6 148.60 699.67 16.52 39.47 1.38 l8t

The validations were carried out on a 54*54 non-uniform grid with a minimum spacing of

0.004 and a maximum spacing of 0.04 in both x and y directions respectively. It has been

found that mesh refinement from 54*54 to 69*69 leads to less than 2o/o deviation for

benchmark parameters, thus ensuring the grid independence of the results.

Spatio-Temporal dynamics for a fixed heater length
First we p..r.nt the results for a heater length of 0.2. The critical Rayleigh number Ra. is

obtained using the method proposed by Silveston [9] where a change in non-dimensional

heat flux curve i.e. the change in slope of Nusselt number vs Ra number curve gives a

value in the vicinity of 3700 as shown in Fig.2. The higher value of Ra. is consistent with

the findings of Koschmeider [9] for similar non-uniform heating boundary conditions. Fig

3(a)-3(g) lepict instantaneoui snapshots of isotherms and streamlines in the flow field.

The flow attains a steady state for Ra:l0l and Ra:104. Therefore the flow fields depicted

in figures 3(a) and 3(b) are sready flow fields. For Ra > lOa not only the instantaneous

,nupihot, bui also the flow field development in thb form of streamline patterns at

different instants of tirre for a given Ra and heater length Hr = 0.2 are shown in figures

4(a)-4(e).
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Fig. 2 Evaluation of critical Rayleigh number.

Because of the discrete heating at the bottom wall of the enclosure, there are two principal
driving forces which cause fluid motion: l) the buoyancy forces in the vertical direction
induced due to density variations, 2) the pressure forces in the horizontal direction
induced due to columns of relatively hot and cold fluid over the discrete heated and
insulated portions of the bottom wall of the enclosure. The motion induced by former is
referred to as buoyancy induced circulation, while that induced by the latter is referred to
as density circulation. At Ra=103 i.e. at subcritical conditions, the conduction is the
4dominant mode as is apparent from the isotherfirs in Fig.{a). The streamline pattem in
Fig. 3(a) is spatially symmetric due to the insignificant effect of density circulation on the
buoyancy driven circulation. The isotherms in all figures have been plotted in the range of
0 - 1.0. The ranges ofstream function are given below the contour plots.

In fig 3(b), for slightly supercritical convection at Ra=104, it is seen that two rolls are

formed with spatial symmetricity still being maintained. The strength of rolls is greater
due to increased convection. The isotherms in Fig.3 (b) are more curved signifying
increased convective motion. From the point of view of temporal behavior the flow
evolves into a steady state at this Ra.

Fig 4 shows the snapshots of streamline patterns at different instants of time with
increasing Ra number for H1 = 0.2. It is. particularly evident from fig. 4d and fig. 4e that
initially the convection is driven by the vertical forces of gravity with the streamline
pattern being highly multicellular and at a later stage, as thp horizontal density gradients
build up in flow, the convection is driven by density circulation with an almost single
dominant convective roll with minor secondary rolls.

Journal of Mechanical Engineering Research and Developments. Vol.22-23, 2001
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-3s0

G)

Fig. 3 lsotherms.and stream.lines at an instant for different Ra at H,=g.2
(a)Ra=103 (b; Ra=104 (c) Ra=9* j 05 (d) Ra=1.4.10d tul n"=i.g;iO.
(f) Ra=2.24.10' (g) Ra=6.72*10'
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t = 0.01
(b)

r:0.01
(c)

t = 0.02
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t = 0.02
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t = 0.015

t = 0.015
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= 
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Fig. 4 Streamline pattern 3t H1 = 0.2 at different instant of time for
(a) Ra=9.1 05 1O; na=t.4*106 (c) Ra=2.8.106
(d) Ra=2.24.107 (e) Ra=6.72*107
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From the time histories of horizontal velocity u at point (a) shown in Fig, 5, it is evident
that with increase in Ra, more and more frequenciei are excited along with an increase in
the amplitude of fluctuations. Similar pattem is observed at point (b).

At Ra=9*105, (Fig' 3c) the spatial symmetricity is completely destroyed with the flow
exhibiting multicellular streamline pattern, The isotherrns ur a .onr.quence are heavily
distorted and are deflected towards the walls with nearly uniform ternperature in thl
interior. The temporal behavior of u at the spatial point (a) showing periodic morion with
harmonics upto a certain time followed by quasi-periodicity .rnii seen in Fig. 5 (a) .

Jhis can be explained from the fact that initially buoyancy driven circulation is the main
driving force but after a certain instant of time bensity driven circulation becomes strong
enough to counteract the buoyancy driven circulation and hence temporal quasil
periodicity appears' The power spectrum in fig 6(a) shows at least five frequincies with a
fairly broad spectrum of non-dimensional frequencies in the range of 0 - 0.05. The
frequency f'u^ shown in the plot refers to the non dimensional rurlting frequency for the
signal and is reciprocal of the nondimensional time interval .rpioy.a for'samiling the
time series data,

At Ra=I,4r'106 , there-is_spatial asymmerry of rolls and isotherms (Fig.3 (d)). The
temporal variation of all the dynamic variables is similar in nature to'Ri=gito3 no*
except that the power spectrum of u at the spatialpoint (a) in fig 6(b), distinctly shows (i)
the reduction in the frequency range to 0 - 0,025 (ii) sharpenlng of the specirum at the
various peaks and (iii) an increase in the power content, *hi"h i, un indication of power
getting concentrated in sharply defined frequencies towards the lower end of the
spectrum.

Further rise in Ra number to 2.8*106 results in a significant change in the flow pattern (fig
3(e)). From a rnulticellular flow pattern the flow again reverts-towards 

" 
,tut, where i

single dominant convective roll exists with small and minor secondary rolls. This is
because at higher Ra, the density circulation generated due to altemaie placement of
heaters tends to counter the buoyancy induced circulation. The density circulaiion is strong
only in the lower portion of the enclosure close to the heaters. This is because thi
horizontal temperature gradients are strongest in these portions at any Ra. If the density
circulation is strong enough to counter the buoyancy induced flow, ii becomes the main
driving force causing convective motion of the fluid', as is the case at na: Z.S*t06. ftre
power spectrum of u at point (a) in fig 6(c) shows that while the power is increased, the
spectrum becomes ever more sharp at the peaks indicating that the frequencies while
becoming distinct are also clustering towards ihe lower end oith. ,p".t u.n.

At Ra:2.24*107, the spatial pattern in fig 3(f) shows a single dominant convective roll
with thin thermal boundary layers at the top of the enclosure-and over the heated portions
of the enclosure. The spectrum in fig 6(d) exhibits the same sharpening and clustering
trend with increase in power.

Finally at Ra = 6.72*107 the isotherms are clustered at the top of the enclosure
indicating that a very thin thermal boundary layer is formed at the top with temperature
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nearly uniform in the entire enclosure (fig 3(g)), From the streamline pattern it is evident
that in the lower portion of the enclosure the fluid velocities are much smaller than in the
upper portion. Fig 6(e) shows the clustering and sharpening phenomenon ofthe spectrum
at point (a). Thus it can be inferred that the density clrculation suppr"rr"J high",
frequencies.

From the time histories of horizontal u.lo.ity u at point (a) shown in Fig. 5, it is evident
that with increase in Ra, more and more frequenciei are eicited along with an increase in
the amplitude of flucruations. Similar pattern is observed at point (b).

Effect of heater length
In order to establish the effect of heater length on the spatio-temporal dynamics, the
numerical simulations were carried out for three heater lengths, nu*rly u, = o.ts,6.zo,
0'25, keeping the number ofheaters fixed and equal to 3. Th; basic effect ofheateriength
is to alter the strength of iorizontal density gradient do/dx in the vicinity of ine
heaters and to alter the surface area ofthermal diffusion. Thus, at any given Ra anl heater
length Hl, the flow pattern, reflects the outcome of the competition between vertical
buoyancy forces, and the pressure forces generated due to horizontal density gradients.

Figures 7 and 8 depict the effect ofheater length at a given instant oftirne for four values
of Ra, namely 104,9*105,2.g*106 and2.24*107. At lower Ra 1< 104-) the effect is hardly
discernible (fig.7a and fig. 8a). As Ra is increased from l04.to 9*l0s'(fig. 7b and fig. gbl
one can clearly make out the difference in the isotherm and streamlin. putt.rnri th,
spatial pattern of streamlines in fig 7b(i)-(iii) shows a change from less cellular to
multicellular and again back to less cellular convection as the lieater length is increased
from 0.15 to 0.25. This is because an increase in heater length from 0.15 to 0.2 leads to
enhanced convection due to an increase in the heating surfaci area. The effect of increase
in area dominates the effect of simultaneous increaseln the strength of density circulation,
leading to the formation thermal plume like structures as seen ln ng aUlli;. As the heatei
length is further increased to 0.25 at same Ra and at the same time iistant we find that the
density circulation destroys the thermal plume like structure as seen in fig gb(iii),
leading to a less cellular flow patrern (fig 7b(iii)).

The formation of thermai plumes emanating frorn the heaters is a sign of strong vertical
buoyancy and weak density circulation effects. At still higher Ra : zls * t ou , u, ft, : o. r i
the strong vertical buoyancy leads again to a multicellular-flow pattern and thermai plume
like structures as shown in fig 7c(i) and fig gc(i) respectivety. thls flow pattern is
destroyed as the hearer length is increased to 0.2 and furtier to o.zs 1fig 7c(ii)-iiii)). The
strength of density circulation becomes so strong that the flow is 

"rr*tluity driven by
horizontal density gradients generated in the vicinity of the hearers. This is particularly
evident from fig 8c(i)-(iii) where the plume like structure at the central heaier for H, :
0.15 is flattened by denlty circulation at Hr : 0.2 and at H, : g.25. Similar trend is
observed at Ra : 2.24*101 $g7d and fig gd).
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The effects of br.royancy circulation and density circulation on the temporal dynamics are

also brought about very clearly through figures 9a-9c. In fig 9a the effect of heater length

at Ra = 9*10) can be seen. In case (i) and (ii) (fig 9a) the br,royancy induced convective
rnotion is dominant and the power spectrum of u at point (a) shows multiple dominant

frequencies which are distinctiy separated from one another, As the heater length is

increased, the number of dominant frequencies reduces to two while the power of
fluctuations is increased. At higher Ra = 2.8*10u, fig 9b, it is observed that while the

power is increased and the spectrum gets clustered due to the frequencies coming closer

to each other, with increase in the heater length the frequencies at the lower end of the

spectrum are also excited (fig gb(iii)). Similar trend is observed at Ra = 2.24*107 as shown

in fig 9c.

CONCLUSIONS

From the above numerical investigations it can be concluded that the spatio-temporal

dynamics in an enclosure with discrete heating at the bottom is governed by two main

pararneters

l) the Rayleigh number 2) the length of the discrete heating portions H: . While the Ra

number affects the vertical buoyancy, the placement of discrete heating portions generates

horizontal density gradients and consequently an associated density circulation effect,

which is affected by the length of the heating portions.

The spatial flow pattern at any given Ra and H1 is an outcome of the competing effects of
convection generated due to vertical buoyancy frorn the discrete heating surfaces and

convective motion generated due to horizontal density gradient. The former results in a

multicellular flow pattern with the formation of thermal plume like structures, while the

latter results in a less multicellular flow with mostly one dominant convective ro1l. The

buoyancy induced convection dominates for Ra < 9*105 for all heater lengths while the

density induced convection dominates for Ra > 9*105 for all heater lengths. At Ra : 9* 105

buoyancy convection dominates for H1 < 0.2,

while density circulation dorninates for H1 > 0.2

The temporal dynamics also exhibits strong dependance on Ra and a somewhat weaker

influence of H1 . At lower Ra the power spectrum of the time series data exhibits a fairly
broad spectrurn with distinct dorninant frequencies sharing almost similar rnagnitude of
power. With increase in Ra, the frequencies come closer to each other with peaks

becoming sharper, the intensity of fluctuations also increases. With increase in heater

length theqe is a small shift in the concentration of power towards the low frequency side

of the spectrum, indicating that the density circulation causes less multicellular convection
than buoyancy iriduced convection.
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NOMENCLATURf,

D Dilation
g acceleration due to gravity
H venical depth of fluid layer
I length ofheated /insulated portions
Hr Non-dimensional length of heated./insulated portions = llH
Nu Nusselt number
P dimensionless Pressure
Pr Prandtl number
Ra Rayleigh number
t time
u, v dimensionless velocity components
xn y dimensionless spatial coordinates
f dimensionless frequency of the fourier transformed time series

Greek Symbols

G Coefficient ofcubical expansion

V dimensionless stream-function

V Kinematic viscosity
r Thermaldiffusivity
0 Non-dimensional Temperafure

AT .Maximumtemperaturedifference

V2 Laplacian operator
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