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accurate upwinding in space and first order accuracy in
time. Due to the non-linearity of thermal boundary
conditions, introduced by spatially discrete periodic
heating and insulation, spatial asymmetricity in pattern
of streamline rolls and isotherms as well as temporal
asymmetricity in the form of quasi-periodicity appears
at lower Rayleigh number compared to standard
Rayleigh-Benard problem. The density circulation
effect gets enhanced with increasing Rayleigh numbers
and this in turn significantly reduces the vertical heat
transport as well as results in breaking up of alternately
larger and smaller rolls into a multicellular convection.

INTRODUCTION

Most of the researchers have investigated the standard Rayleigh-Benard (R-B)
phenomenon either in cubical enclosures or circular cylinder enclosures with absolutely
uniform temperatures on the top and bottom horizontal boundaries. The fixed boundary
condition of temperature has been studied in detail by various researchers, both
experimentally by Koschmeider [1], Gollub and Benson [2], Behringer and Ahlers [3], etc
and numerically by Curry et. al.[4], Mukutmoni and Yang [5], Stella et. al. [6] etc. Both
Gollub and Benson [2] and Mukutmoni and Yang [5] found that the preferred route of
transition from laminar to chaotic state is Ruelle, Takens and Newhouse [7] route if
asymmetric boundary conditions are maintained and Feigenbaums' [8] period doubling
route if special symmetry conditions are imposed numerically.

The presence of systematic non-uniformities on the horizontal boundary produces a
horizontal pressure gradient in the fluid, because the hydrostatic pressure under a warm
fluid column is smaller than the hydrostatic pressure under acold fluid column of same
depth. That means the fluid will move from higher pressure to lower pressure regions,
independent of the magnitude of the vertical temperature gradient, even with stable
stratification. So the circulation generated by the vertical temperature gradient will be
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nonlinearly superimposed on the density circulation, which finally introduces an
orientation into the fluid layer which is likely to change the scenario of the patterns that
one finds on a uniformly heated plane.

The investigation of convection with non-uniform heating began with an experiment of
Koschmeider [9]. The axisymmetric radial temperature gradient on bottom plane results in
circulation given by the pressure differences between the warm and cold fluid columns.
As vertical instability is also present in a non-uniformly heated fluid layer, each second
convection roll will turn in a direction opposite to the motion of the density circulation;
each second roll is therefore smaller than its neighbor which turns with the density
circulation. This pattern of rolls persists till moderately supercritical conditions.

Further rise in radial temperature gradient results in convection rolls changing the
orientation of their axes from the azimuthal to radial direction. The only other two
experimental investigations of R-B convection with non-uniform temperature on the
horizontal boundaries are from Berkovsky and Fertman [10] and Srulijes [11], both made
with rectangular containers. In Srulijes [11] experiments on the top as well as bottom
boundaries had the same linear horizontal temperature gradient and resulted in pattern of
alternately larger and smaller rolls. Weber [12,13] studied theoretically the two
Jdimensional case with a constant 98/0x on the bottom and a uniform 6 on top wall,
assuming |00/0x| << [08/dy|. He showed that the onset of convection in the presence of a
horizontal temperature gradient will take place at a Ra number larger than the critical Ra
on a uniformly heated plane, attributing this to the density circulation which reduces the
vertical temperature gradient and thus making the fluid layer more stable.

Our aim of investigation was to observe the spatio-temporal changes in a square enclosure
with increasing Ra number but also to analyze the character of transition from laminar to
highly aperiodic natural convection that occurs in the presence of discrete spatially
periodic heating on the bottom horizontal plane, which introduces a nonlinear horizontal
temperature gradient. To the present knowledge of authors, this type of boundary
condition has not been investigated by any researcher. In section 2 we summarize the
dynamical equations and numerical scheme employed in our analysis. In section 3 the
states of medium Pr number (Pr=7.0) 2D convection are studied. In section 4 conclusiong
are drawn and future scope of work discussed.

MATHEMATICAL FORMULATION
The non-dimensional equations in primitive variables that govern the transport of mass,

momentum and heat in an incompressible Bousinessq fluid can be written in weak
conservative form in a two-dimensional Cartesian coordinate system as

Ju/ox + ov/dy =0 @)
Ju/dt + ou¥/dx + duv/dy = -op/ox + Pr Vi : )
Jv/ot + duv/ox + ov*/dy = - dp/dy + PrVlv+RaPr@ (3)
20/0t + dud/dx + ave/dy = V’6 4)
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The Poisson equation for pressure is given as
V2p = - 3D/ ot - 2 d*uv/oxdy - °u’/ax’ - 9°v*/dy’ + Pr V?D + Ra Pr 96/dy (5)

where Ra= agH’AT/vk. The flow is assumed to occur in a square enclosure in the regxon
_0<x<H and 0<y<H. The reference length, velocity and time used are H, x/H and H" /K.

No-slip boundary conditions are employed for u and v on all the walls. 6 is assumed to
satisfy conducting boundary conditions on the top and discrete portions of bottom heated
plate, while the Neumann boundary condition 06/dx = 0 is assumed for the insulated side
walls (see Fig.1). The perturbation in temperature in the fluid is provided by the
temperature gradient due to unit time the fluid needs to acquire the adjacent wall
temperature, The boundary conditions used are :

6=1.0 on portions AB, CD and EF (heating portions)
08/0y = 0.0  on portions BC and DE (non heating portions)
6=0.0 on top wall.GH
00/0x = 0.0  on vertical walls AH and GF
u,v=0.0 on all the walls
; u=v=0 =10
H G
u=v=0 u=v=0
68 8x=0 h 8 8x=0
a

A BeofoD Bk

Fig. 1 Physical domain of the problem.
The nonlinear terms in eqns. (2) to (4) are evaluated using second order upwinding in
space i.e. Leonard's [14] QUICK scheme or fifth-order upwinding as used by Rai and
Moin [15]. The diffusion terms are discretized using the three point central differencing
stencil, while the time integration has been performed explicitly (Euler's scheme) in order
to capture the unsteady physics especially of the oscillatory flow regime. The Poisson eqn.
for pressure (5) has been solved using Strongly Implicit Procedure (SIP) till a L,-norm
tolerance limit of 10 is reached (for non-dimensional pressure values of the order of
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10'%). The above method has been implemented on a 54*54 orthogonal, non-uniform,
collocated mesh with a minimum and maximum grid spacing of 0.004 and 0.04 in either
directions respectively. The time integration was performed for 100 to 250 seconds in
physical time using a variable dimensional time step of order of 107 at low Ra flows and
10° — 107 at high Ra flows. The time histories of dynamical variables like u,v and 6 are
recorded at two points shown as (a) and (b) in fig. 1. The coordinates for these points are
(0.1, 0.1) and (0.5, 0.5) respectively.

For spectral analysis of time series data, codes were developed to calculate power
spectrum using Entropy method, Press et al. [16] and Phase Portraits as given in Gollub
and Baker [17], etc.

TIME DEPENDENT CONVECTION

The developed code has been validated with the numerical results of Nonino et.al [18] for
2D differentially heated square cavity problem and an error in between 1-2% is obtained

for velocities and Nusselt numbers at the heated wall for Ra=10’ to 10’ as shown in Table 1.

Table 1. Validation of code with numerical results of C. Nonino et. al[18]

Ra W] {Biee Nk Nag Nujosral: Nbwa Reference
10° 9.67 30,200 69.10 4.52 7.68 0.74 present
10° 9.62 34,75 68.65 4.52 733 0.72 [18]
10° | 16.89 66.11 222000 8.82 17.49 1.00 present
10° | 16.82 64.83 220.63 8.82 17.56 0.98 [18]
10" | 31.40 15223 708.54 16.25 38.98 1.38 present
10" | 30.16 148.60 699.67 16.52 39.47 1.38 [18]

The validations were carried out on a 54*54 non-uniform grid with a minimum spacing of
0.004 and a maximum spacing of 0.04 in both x and y directions respectively. It has been
found that mesh refinement from 54*54 to 69*69 leads to less than 2% deviation for
benchmark parameters, thus ensuring the grid independence of the results.

Spatio-Temporal dynamics for a fixed heater length

First we present the results for a heater length of 0.2. The critical Rayleigh number Ra_ is
obtained using the method proposed by Silveston [19] where a change in non-dimensional
heat flux curve i.e. the change in slope of Nusselt number vs Ra number curve gives a
value in the vicinity of 3700 as shown in Fig.2. The higher value of Ra. is consistent with
the findings of Koschmeider [9] for similar non-uniform heating boundary conditions. Fig
3(a)-3(g) depict instantaneous snapshots of isotherms and streamlines in the flow field.
The flow attains a steady state for Ra=10> and Ra=10". Therefore the flow fields depicted
in figures 3(a) and 3(b) are steady flow fields. For Ra > 10* not only the instantaneous
snapshots but also the flow field development in the form of streamline patterns at
different instants of time for a given Ra and heater length H, = 0.2 are shown in figures
4(a)-4(e).
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'Fig. 2 Evaluation of critical Rayleigh number.

Because of the discrete heating at the bottom wall of the enclosure, there are two principal
driving forces which cause fluid motion: 1) the buoyancy forces in the vertical direction
induced due to density variations, 2) the pressure forces in the horizontal direction
induced due to columns of relatively hot and cold fluid over the discrete heated and
insulated portions of the bottom wall of the enclosure. The motion induced by former is
referred to as buoyancy induced circulation, while that induced by the latter is referred to
as density circulation. At Ra=10’ i.e. at subcritical conditions, the conduction is the
4dominant mode as is apparent from the isotherms in Fig.3(a). The streamline pattern in
Fig. 3(a) is spatially symmetric due to the insignificant effect of density circulation on the
buoyancy driven circulation. The isotherms in all figures have been plotted in the range of
0 — 1.0. The ranges of stream function are given below the contour plots.

In fig 3(b), for slightly supercritical convection at Ra=10", it is seen that two rolls are
formed with spatial symmetricity still being maintained. The strength of rolls is greater
due to increased convection. The isotherms in Fig.3 (b) are more curved signifying
increased convective motion. From the point of view of temporal behavior the flow
evolves into a steady state at this Ra.

Fig 4 shows the snapshots of streamline patterns at different instants of time with
increasing Ra number for H,= 0.2. It is particularly evident from fig. 4d and fig. 4e that
initially the convection is driven by the vertical forces of gravity with the streamline
pattern being highly multicellular and at a later stage, as the horizontal density gradients
build up in flow, the convection is driven by density circulation with an almost single
dominant convective roll with minor secondary rolls.
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Fig. 3 Isotherms and Streamlines at an instant for different Ra at H,=0.2

(a) Ra=10° (b) Ra=10* (c) Ra=9*10° (d) Ra=1.4*10° () Ra=2.8*10°
(f) Ra=2.24*10" (g) Ra=6.72*10"
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Fig. 4 Streamline pattern at’H, = 0.2 at different instant of time for

(a) Ra=9*105(b; Ra=1.4*10° (c) Ra=2.8*10°
(d) Ra=2.24*10" (e) Ra=6.72*10"
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From the time histories of horizontal velocity u at point (a) shown in Fig. 5, it is evident
that with increase in Ra, more and more frequencies are excited along with an increase in
the amplitude of fluctuations. Similar pattern is observed at point (b).

At Ra=9*10°, (Fig. 3c) the spatial symmetricity is completely destroyed with the flow
exhibiting multicellular streamline pattern. The isotherms as a consequence are heavily
distorted and are deflected towards the walls with nearly uniform temperature in the
interior. The temporal behavior of u at the spatial point (a) showing periodic motion with
harmonics upto a certain time followed by quasi-periodicity can be seen in Fig. 5 (a) .
This can be explained from the fact that initially buoyancy driven circulation is the main
driving force but after a certain instant of time density driven circulation becomes strong
enough to counteract the buoyancy driven circulation and hence temporal quasi-
periodicity appears. The power spectrum in fig 6(a) shows at least five frequencies with a
fairly broad spectrum of non-dimensional frequencies in the range of 0 — 0.05. The
frequency fi. shown in the plot refers to the non dimensional sampling frequency for the
signal and is reciprocal of the nondimensional time interval employed for sampling the
time series data.

At Ra=1.4*10° | there is spatial asymmetry of rolls and isotherms (Fig.3 (d)). The
temporal variation of all the dynamic variables is similar in nature to Ra=9*10° flow
except that the power spectrum of u at the spatial point (a) in fig 6(b), distinctly shows (i)
the reduction in the frequency range to 0 — 0.025 (ii) Sharpening of the spectrum at the
various peaks and (iii) an increase in the power content, which is an indication of power
getting concentrated in sharply defined frequencies towards the lower end of the
spectrum.,

Further rise in Ra number to 2.8*10° results in a significant change in the flow pattern (fig
3(e)). From a multicellular flow pattern the flow again reverts towards a state where a
single dominant convective roll exists with small and minor secondary rolls. This is
because at higher Ra, the density circulation generated due to alternate placement of
heaters tends to counter the buoyancy induced circulation. The density circulation is strong
only in the lower portion of the enclosure close to the heaters. This is because the
* horizontal temperature gradients are strongest in these portions at any Ra. If the density
circulation is strong enough to counter the buoyancy induced flow, it becomes the main
driving force causing convective motion of the fluid, as is the case at Ra = 2.8*10°. The
power spectrum of u at point (a) in fig 6(c) shows that while the power is increased, the
spectrum becomes even more sharp at the peaks indicating that the frequencies while
becoming distinct are also clustering towards the lower end of the spectrum.

At Ra = 2.24*107, the spatial pattern in fig 3(f) shows a single dominant convective roll
with thin thermal boundary layers at the top of the enclosure and over the heated portions
of the enclosure. The spectrum in fig 6(d) exhibits the same sharpening and clustering
trend with increase in power.

Finally at Ra = 6.72*10’ the isotherms are clustered at the top of the enclosure
indicating that a very thin thermal boundary layer is formed at the top with temperature
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nearly uniform in the entire enclosure (fig 3(g)). From the streamline pattern it is evident
that in the lower portion of the enclosure the fluid velocities are much smaller than in the
upper portion. Fig 6(¢) shows the clustering and sharpening phenomenon of the spectrum
at point (a). Thus it can be inferred that the density circulation suppresses higher
frequencies.

From the time histories of horizontal velocity u at point (a) shown in Fig. 5, it is evident
that with increase in Ra, more and more frequencies are excited along with an increase in
the amplitude of fluctuations. Similar pattern is observed at point (b).

Effect of heater length

In order to establish the effect of heater length on the spatio-temporal dynamics, the
numerical simulations were carried out for three heater lengths, namely H, = 0.15, 0.20,
0.25, keeping the number of heaters fixed and equal to 3. The basic effect of heater length
is to alter the strength of horizontal density gradient 00/0x  in the vicinity of the
heaters and to alter the surface area of thermal diffusion. Thus, at any given Ra and heater
length H, the flow pattern reflects the outcome of the competition between vertical
buoyancy forces, and the pressure forces generated due to horizontal density gradients.

Figures 7 and 8 depict the effect of heater length at a given instant of time for four values
of Ra, namely 10%, 9*10°, 2.8*10° and 2.24*10”. At lower Ra (< 10*) the effect is hardly
discernible (fig. 7a and fig. 8a). As Ra is increased from 10*to 9%10° (fig. 7b and fig. 8b)
one can clearly make out the difference in the isotherm and streamline patterns. The
spatial pattern of streamlines in fig 7b(i)-(iii) shows a change from less cellular to
multicellular and again back to less cellular convection as the heater length is increased
from 0.15 to 0.25. This is because an increase in heater length from 0.15 to 0.2 leads to
enhanced convection due to an increase in the heating surface area. The effect of increase
in area dominates the effect of simultaneous increase in the strength of density circulation,
leading to the formation thermal plume like structures as seen in fig 8b(ii). As the heater
length is further increased to 0.25 at same Ra and at the same time instant we find that the
density circulation destroys the thermal plume like structure as seen in fig 8b(iii),
leading to a less cellular flow pattern (fig 7b(iii)).

The formation of thermal plumes emanating from the heaters is a sign of strong vertical
buoyancy and weak density circulation effects. At still higher Ra = 2.8*10° , at H, = 0.15
the strong vertical buoyancy leads again to a multicellular flow pattern and thermal plume
like structures as shown in fig 7c(i) and fig 8c(i) respectively. This flow pattern is
destroyed as the heater length is increased to 0.2 and further to 0.25 (fig 7c(ii)=(iii)). The
strength of density circulation becomes so strong that the flow is essentially driven by
horizontal density gradients generated in the vicinity of the heaters. This is particularly
evident from fig 8c(i)-(iii) where the plume like structure at the central heater for H, =
0.15 is flattened by density circulation at H, = 0.2 and at H; = 0.25. Similar trend is
observed at Ra = 2.24*10’ (fig 7d and fig 8d).
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The effects of buoyancy circulation and density circulation on the temporal dynamics are
also brought about very clearly through figures 9a-9¢c. In fig 9a the effect of heater length
at Ra = 9*10° can be seen. In case (i) and (ii) (fig 9a) the buoyancy induced convective
motion is dominant and the power spectrum of u at point (a) shows multiple dominant
frequencies which are distinctly separated from one another. As the heater length is
increased, the number of domihant frequencies reduces to two while the power of
fluctuations is increased. At higher Ra = 2.8*10°, fig 9b, it is observed that while the
power is increased and the spectrum gets clustered due to the frequencies coming closer
to each other, with increase in the heater length the frequencies at the lower end of the
spectrum are also excited (fig 9b(iii)). Similar trend is observed at Ra = 2. 24*107 as shown
in fig 9c.

CONCLUSIONS

From the above numerical investigations it can be concluded that the spatio- temporal
dynamics in an enclosure with discrete heating at the bottom is governed by two main
parameters

1) the Rayleigh number 2) the length of the discrete heating portions H; . While the Ra
number affects the vertical buoyancy, the placement of discrete heating portions generates
horizontal density gradients and consequently an associated density circulation effect,
which is affected by the length of the heating portions.

The spatial flow pattern at any given Ra and H, is an outcome of the competing effects of
convection generated due to vertical buoyancy from the discrete heating surfaces and
convective motion generated due to horizontal density gradient. The former results in a
multicellular flow pattern with the formation of thermal plume like structures, while the
latter results in a less multicellular flow with mostly one dominant convective roll. The
buoyancy induced convection dominates for Ra < 9*10° for all heater lengths while the
density induced convection dominates for Ra > 9*10° for all heater lengths. At Ra = 9*10°
buoyancy convection dominates for H;< 0.2,

while density circulation dominates for H; = 0.2

The temporal dynamics also exhibits strong dependance on Ra and a somewhat weaker
influence of H; . At lower Ra the power spectrum of the time series data exhibits a fairly
broad spectrum with distinct dominant frequencies sharing almost similar magnitude of
power. With increase in Ra, the frequencies come closer to each other with peaks
becoming sharper, the intensity of fluctuations also increases. With increase in heater
length there is a small shift in the concentration of power towards the low frequency side
of the spectrum, indicating that the density circulation causes less multicellular convection
than buoyancy induced convection.
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Fig. 5 Time histories of velocity u at point (a) at H;= 0.2 for
(a) Ra=9*10° (b) Ra=1.4*10°(c) Ra=2.8*10° (d) Ra=2.24*10’
(e) Ra=6.72*10
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(a) Ra=9*10° (b; Ra=1.4*10° (c) Ra=2.8*10° (d) Ra=2.24*10"
(e) Ra=6.72*10

Journal of Mechanical Engineering Research and Developments. Vol.22-23, 2001

b




Natural Convection in Enclosures 31 Baig and Hasan

S

Y

Al

3

@ (i) (i)
(d)
Fig. 7 Streamline patterns for (i) H,= 0.15 (”25 H; = 0.20 (iii) H; = 0.25 at

(a) Ra=10* (b) Ra=9*10° (c) Ra=2.8*10° (d) Ra=2.24*10’

Journal of Mechanical Engineering Research and Developments. Val.22-23, 2001



Natural Convection in Enclosures 32 Baig and Hasan

(d)

Fig. 8 Isotherms for (i) H,= 0.15 (ii) H, = 0.20 (iii) H, = 0.25 at
(a) Ra=10* (b) Ra=9*10° (c) Ra=2.8*10° (d) Ra=2.24*10"
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NOMENCLATURE

D Dilation

g acceleration due to gravity

H vertical depth of fluid layer

1 length of heated /insulated portions

H, Non-dimensional length of heated/insulated portions = I/H

Nu Nusselt number

P dimensionless Pressure

P Prandtl number

Ra Rayleigh number

t time

u, v dimensionless velocity components

X,y dimensionless spatial coordinates

£ dimensionless frequency of the fourier transformed time series

Greek Symbols

o Coefficient of cubical expansion

\U} dimensionless stream-function

Vv Kinematic viscosity

K Thermal diffusivity

6 Non-dimensional Temperature

AT . Maximum temperature difference

v? Laplacian operator
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