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Abstract: In our earlier work (Sen and Veeravalli, l998a"b)
we have shown the relevance of stability theory in
understanding the dynamics of turbulence in fully developed

wall-bounded flows. Here we wish to extend the work
presented in Sen and Veeravalli (1998b) by using a

composite model for calculating both inner and (damped)

outerstability modes, for a I'ully developed turbulent channel.

Some comparisons with the experiements of Hussain and

Reynolds (1972) are also presented.
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INTRODUCTION

In Sen and Veeravalli (1998a), hereinafter referred to as S and V, we had examined the

relevance of hydrodynamic stability theory to understanding fully developed turbulence in

wall bounded flows. While the role of hydrodynamic stability theory in predicting tht
dominant instability mechanism in free shear flows is well known and well studied (see for

example Gaster et al., 1985 Liu, 1988 and Roshko, 1992), its usefulness in wall bounded

flows has remained in question. Here we will not go into the history of this problem

starting with the pioneering works of Malkus (1956), Reynolds and Tiederman (1967)'

Reynolds and Huisain (1972), Hussain and Reynolds (1972) etc. The interested reader is

referred to S and V for these details.

S and V mainly concerned itself with the stability of turbulent boundary layers. In Sen and-

Veeravalli (l9b8b), hereinafter referred to as S and V2, we had considered the specifics of
turbulent channel flow. We had shown that with the help a generalised (anisotropic) eddy

viscosity model, along the lines of Pope (1975), some of the key features of wall turbulence

could bL captured by studying the behaviour of organised disturbances in fully developed

turbulent flow. ln oider to 
"nibl" 

comparisons with experiments, two separate versions of
the anisotropy model had to be used to obtain inner andiouter modes. Here we wish to

present a composite model that enables us to calculate both inner and outer modes' 
_ 
Some

comparisons with the experiments of Hussain and Reynolds (1972) are also presented.

THEORY

In the discussion to follow the instantaneous velocity vector is ui and the pressure is p. All
physical quantities have been normalised by the average velocity, V, the channel half

width, H, the kinematic viscosity, v, and density, p. The characteristic Reynolds number R

is defined as VH/v. For some of the discussions to follow it is useful to non-dimensionalise

using the inner velocity scale, v,, which is the wall friction velocity, and the inner length

scalg v/v-. All quantities non-dimensionalised by inner variables are denoted by the
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superscript (+). The mean velocity is in the x direction, y is normal to the wall, and the
mean.flow is independent of the x and z directions. (xr, iz, x3) and (x, y, z) wili be used
interchangably and so also (u1, u2, u3) and (u, v, w). Figure I shows the definition sketch of
the flow.

Stability of Channel Floo-

Figure l: Sketch of the flow

We use the standard Reynolds decomposition:

u, =[, +ui i p=F+p,

where, [; , B are respectively the time averaged velocity and pressure, and
turbulent fluctuations.

l(0,0,)l ..l(";'1)l

i
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(l)

uf , p' are the

we now superimpose an organised (solenoidal) disturbance, t,, p 1wit6 zero mean), then
the instantaneous velocity and pressure are respectively:

ui =di +fr, +ui i p=F+F+p' (2)

The.time averages of u; and p remain the same ,but the ensemble (phase locked) averages
are different. we denote ensemble averages by pointed brackets . t. Th"n,

(u,)=[, +fr, i (p)=F*F (3)

we assume that the organised disturbance is small in the following sense,

(4)

We now introduce (twice) the rate of strain rate tensor and (twice) the vorticity tensor,
respectively s;.; and {Dii as follows :
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(a", tu,)=[ti *' )

83

',=[*.*)
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(5a. b), oii

The mean and ensemble averages are S,, , 6,,and (s,,) una (ar,,) respectively..

As in S and V, following Pope (1975), we model the time averaged Reynolds stress tensor

as follows:

qu: = -1uu,+6si -'[*)[]h-l r-41] ; (6)

Here, e is the eddy viscosiry defined * - uV l(aVay); k is the turbulent kinetic energy;

e6 is the dissipation rate ofthe turbulent kinetic energy and C is a constant. From the form

of the above equation we can define an anisotropy parameter l, as C(k/eo)d[/dy' . Thus

the standard isotropic form of the eddy viscosity model is recovered when l' is zero'

The ensemble average of the Reynolds stress similarly is modelled as:

-("1"i) =-1kdu +"(6')

" lfiJ [] 
[r'* I ('-') - ('* x")]] (7)

Here, I', is the mean velocity gradient.

Since the organised disturbance is solenoidal we can define a stream function ty' such that

i = OVll and V = - At lAxand if we assume normal modes then ty' may be written as,

, 
tp = Q(y)si"(*'"') (8)

where, $ is the eigenfunction, a is the spatial wavenumber and c : cr + ic1 is the complex

wave speed.

ui obeys the Navier-Stokes and continuity equations and from these the evolution equations

for (u,) may be obtained by ensemble averaging. If we subtract the equations fo. (u,)

from those for ui, we obtain the equations governing the evolution of fr . Then using the
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Stability of Channel Flow

And at the channel centre Y=l are,

Q'=0 ; O'' = 0 anti-symmetricmode;

Q = 0 ., d" = 0 symmetricmode;

84 Sen and I'eerovalli

model for the Reynolds stresses as above we obtain the following extended Orr-

Sommerfeld equation as in S and V,

ia(u - 
")(o' 

- o' o)-n' ol- | tlla' " - ?o' o' * o,o Ql"- 
1/R[rb" n -2d'o' i or6\*ze', {Q" - o'0'\* t' {6' * o'6\]

+l-zio6'' 
+zia'6'f-ry1)'e" +22't' + )''e)=0 (e)

Primes (') denote differentiation with respect to y. In (9), the first group of terms in square

brackets corresponds to the Rayleigh equation; the first two groups of terms in square

brackets correspond to the classical Orr-Sommerfeld equation; and, the remaining terms

constitute the modifications in, the classical Orr-Sommerfeld equation.

The reader is referred to S and V for a more detailed derivation and for a discussion ofthe

subtleties involved in the model.

The boundary conditions at the wall y:0 are,

Q=o;0'= o ( l0)

(l la)

(r rb)

In order to compute the eigenfunction expressions for e and tr as functions of y are

required. Reynolds and Tiederman (1967) report an analytical expression for e which

matches well with experimental measurements. The same expression is used here'

In S and V, two expressions were given for tr, following a detailed discussion of how it is

to be obtained from experimental data (Klebenoffl l95a) and numerical simulations

(Spalart 1988). The first expression was given in inner variables and matches reasonably

*.tt *ittt experimental data in the wall region, while the second expression in outer

variables wassmoother and easier to use from a computational viewpoint. However, both

expressions yield a value of3 for I at the channel centre. Since the turbulence at the centre

of the channel is nearly isotopic, I should approach a value of zero at the centre' This is

not a serious error if we are only intetested in wall modes, however' if outer modes are to

be calculated, also then it is important to enforce the proper value at the channel centre.

Thus, for the resutts presented here, the expression for l, is as follows:

,r = r(v. b(y)
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where,

85 Sen and l'eeravalli

and,

(12a)

(l2b)

Figure 2 shows the resulting variation of l, with y at a Reynolds number of 5000. Also
shown in the figure is l" estimated from the experimental data of Klebanoff(1955). The

rather high value of I x 25 shown by the experimental data near the wall is not critical to
the model and we find that good results are obtained by allowing L to start from a value of
10.5.

Figure 2: Graph of Anisotropy eun"riol tr- (=I) versus y*, standardised in terms

of inner variables. Based on experimental data of Klebanoff, and from eq.( l2a,b)

Finally, an analytically continuous and realistic turbulent mean velocity profile is required.

This is obtained by the same procedure as outlined in Reynolds and Tiederman (1967), S
and V2.

RESULTS

The details of the numerical scheme used to computethe eigenvalues are given in Sen and

Vashist (1989) and Sen et al., (1985). The calculations were done for symmetric modes

r(y. )= ro s[,,ro s . (til:) 
{' 

-..' t#)}]
g(y)=os[r-*(t#t)]

- 
I(expt.deta)

-- ,\ (eq. 12c,b)

0
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Stabilit-v of Channel Flow Sen and l'eeravallt

only as they are more unstable. A value for cr was chosen and the complex wave speed, c.

was computed as the eigen value. A positive value for ci, thus. indicates instabilitl,.

In S and V2, the results for three different Reynolds numbers (5000, 11000 and 17000)

were presented. In each case a wide range of unstable wave numbers was obtaiined with

the wave speed cr * 0.3, which corresponds to the inner mode. Comparisons with the

results for the boundary layer showed that the results for the channel flow and the boundary

layer were nearly indistinguishable at all the three Reynolds numbers. when plotterC in inner

variables. From physical considerations, this is expected as the wall region dynamics is

nearly independent of the outer (or channel centre) boundary condition at high Reynolds

numbers. Other features, like the location of the peak of u rms, also matched 'well with
reported literature.

We note that with the composite model (equation 12) the results for the inner mode are

nearly identical with those reported in S and V2. ln addition, it was possible to obtain
(damped) outer modes, which could be compared with the data of Hussain and Reynolds

(1972). This will be the main focus of the discussion here.

As far as we are aware, the only experimental results with which direct comparisons may

be made are those of Hussain and Reynolds (1972) in a turbulent channel. Hussain and

Reynolds (1972) introduced a 2-D disturbance in a fully developed turbulent charrnel using

a vibrating ribbon at four different frequencies and extracted the resulting eigenftrnctions

and their amplitudes and phases using phase-locked averaging. However, all the

disturbances considered there (the minimum frequency chosen was 25Hz and the

maximum frequency was l00Hz) were found to be damped outer (since c, was found to be

close to 1.0) modes. The average velocity, V, used in the experiment was 5.88m,/s and the

channel half-width, 6 was approximately 3.2cm yielding a Reynolds number of I2 1r50.

Our computations show that in essence there exist two modes; an inner mode (wit;h c, close

to 0.3) and an outer mode (with c, close to 1.0) which is always damped (tlrrere exist

additional outer modes which are more heavily damped which will not be of concern here).

Figure 3 shows the growth rate, for the inner mode, as a function gf the wave number

(both non-dimensionalised in inner variables) computed at a Reynolds number of 5000' We

see that there exists a large band of unstable wave numbers. The curve shown in 1fi61ure 3 is

nearly universal (c.f. S and V and S and V2) and thus we can use it to compan: 'with the

expQriments of Reynolds and Hussain (1972) even though their flow Reynolds number is

different. Given the parameters as in Hussain and Reynolds (1972), we estimate that a,

band of unstable waves (inner mode) exists for the frequency range, approximately I 50Flz:

to approximately lkHz, with the peak at 440H2. Further, till the frequency becomes close

to 150H2 the inner modes are more heavily damped than the outer mode because ther

growth rate curve crosses the abscissa rather steeply. Direct comparisons with ther

experimental data of Hussain and Reynolds ( I 972) are presented in Table I .

We note that the temporal growth rate exponent in the computations is estimaterl as acl

since a real a is chosen. However, in the experiment it is the frequency, crc, that is real,

and a, is a complex number. Thus the growth rate exponent in the experiment is - cx,'x. We
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Figure 3: Graph of the growth rate, 0"cl* versus 0,*, (inner variables scaling)

can convert this to a temporal growth rate by writing x = Vst, where, V, is the group

velocity, given by V, = d(aald(a). Ho*.ver, since for both the inner and outer modes

we find that c, varies very slowly with c, the group velocity Vs o c,, from which we can

estimate the equivalent temporal growth rate exponent in the experiment ?S - ct;c.. This is

the growth rate reported in Table l.

Freq. (Hz) c[r cr Growth rate Source

25

50

75

100

0.981 I l3%

t.87 t8j%
2.12 !1Vo

3.57 t.6.10/o

0.861 t 137o

0.904 t 8.5%

0.93 !7o/o

0.946 ! 6.10/o

- 0.063 r.23%

- 0.11 t20.5%

- 0.t8 t2l%
-0.27 t22%

H&R

H&R

H&R

H&R

24.5

50.7

77.0

99.6

0.85

1.68

2.49

3.l8

0.98

t.02

1.05

1.06

- 0.049

- 0,041

- 0.0s2

- 0.085

outer mode

outer mode

outer mode

outer mode

25.5

49.6

74.3

98. I

1.69

3.60

5.1 1

6.45

0.265

0.242

0.255

0.267

0.62

0.60

0.47

0.33

inner mode

inner mode

inner mode

inner mode

Table l. Wave data: Comparison between experiments of Hussain and Reynolds

(1972) (H and R) and present calculations. All quantities except the frequency are

dimensionless and normalised using the channel half width and the mean velocity.
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We note from table I that there is reasonable qualitative agreement between the
experimental results of Hussain and Reynolds (1972) and our computational results for the
outer mode. Secondly, for the range of frequencies studied, the inner mode is more heavily
damped and thus only the outer mode is picked up by the experiments of Hussain and
Reynolds (1972).

While there is agreement between the experiment and our computation for the parameters
shown in table l, other features do not match so readily. The experimental data show that
the profile for u rms has two maxima close to the wali and one in the outer region.
The inner maximum gradually disappears as x increases. In the computations, the inner
mode shows a double maximum while the outer mode shows only a single peak which is in
disagreement with the experiments. The same disagreement was noted in the computations
of Reynolds and Hussain (1972) (the results of Reynolds and Hussain (1972) can be
obtained here by setting l, to zero, however, they did not obtain the unstable.inner mode).
Reynolds and Hussain (1972) tried to resolve this by noting that there is a second outer
mode that is more heavily damped and if initially the ribbon excites both the modes then
one could obtain a double humped profile as seen in the experiments with the hump near
the wall getting suppressed as x increases, because it is more heavily damped. However, as
shown in Reynolds and Hussain (1972) even with the superposition of the outer modes, the
locations of the two maxima do not agree with the experimentally observed values. It is
likely that it is a superposition of the outer and inner modes determined here, that is more
appropriate, especially at l00Hz, since the inner mode is only slightly more damped than
the outer mode at this frequency. This can be properly resolved only after conducting
further experiments at higher frequencies designed to match those of the unstable innei
mode.

Finally, we note from the spectral measurements of Hussain and Reynolds (1975), that the
band of unstable wavenumbers reported here (in Figure 3) is fully contained in the energy-
containing eddies region (figure from Hussain and Reynolds (1972\ not shown). The same
result was reported in S and V for the turbulent boundary layer.

CONCLUSIONS

We have shown that the extended Orr-Sommerfefd equation of S and V is capable of
capturing some of the key features of turbulent channel flows. The composite expression
for the anisotropy function (1,) reported here is adequate in capturing the behaviour both
close to the wall and away from it. Comparisons with the experimental data of Reynolds
and Hussain (1972) \ show good qualitative agreement, however, further experiments at
higher frequencies are needed to verif our computations for the inner mode.
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