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INTRODUCTION

Over the last several decades much has been contributed to the understanding of the
phenomenon of laminar to turbulent transition, in parallel and near-parallel laminar shear
flows, by the use of the Orr-Sommerfeld (OS) equation. Here we discuss some aspects of
stability calculations that may be made, using the OS equation and extended versions of the
OS equation accounting for non-parallel and non-linear effects. Our attention will be
confined to wall-bounded flows, like channel flow and boundary layer flow, although, the
results could carry over almost entirely to cases of free shear flows as well.

One of the interesting theorems to look at, is the Gaster [2] transform citing the equivalence
of the temporal and spatial problems. Within certain limits, this equivalence is seen to carry
over to non-parallel and non-linear cases also.

We begin by giving a very brief introduction to the OS equation. Starting from the
linearised Navier-Stokes and continuity equations, and introducing a 2D disturbance

streamfunction y of the form ¢ ~ ¢(y) exp [l(ax - ﬂt)], or Y~ ¢(y)exp [ia(x - ct)],
where o is the spatial wavenumber, B is the temporal frequency, ¢ =/ & is the phase

speed, and x, y are co-ordinates respectively along the flow and normal to the wall, one
obtains the OS equation given below:

ial(u-c)(g”-a’g)-u" g]- % (¢ - 204" + a*4)=0 : (1)

where, in (1), primes (') denote differentiation with respect to y, and R is the Reynolds
number based on a suitable length scale and suitable velocity scale pertinent to a particular
problem. Two dimensional disturbances are considered in view of the well known Squire's
theorem that, for linear stability theory, 2D disturbances are more unstable than 3D ones.
Actually in the initial phase of the growth of linear disturbances, the disturbances may
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grow as 2D disturbances for quite some time, till C-type and H-type 3D bifurcations take
over. We will confine our attention to 2D disturbances here.

The OS equation as given by (1) is exact only for a strictly parallel mean flow, like channel
flow. For slightly non-parallel flows, like in boundary layer flows, the so-called ‘quasi-
parallel” approximation needs to be made, to get the form of (1). In this approximation the
mean velocity v in the transverse direction is small and is ignored, i.e. v ~ 0. Also ignored
are the weak changes with respect to x of the longitudinal mean flow velocity u, i.e. du / 6x
~ 0. However, at each local station the local distribution of u is used in the OS equation
(1). This takes care of the so-called non-parallel effects to a large extent.

Before going into various aspects of the calculations based on the OS equation, and
extended forms of the OS equations, it will be pertinent to look at an operational principle
reported by Sen and Thomas [10]. This is discussed next.

AN OPERATIONAL PRINCIPLE

The OS equation (1), has to be solved with appropriate boundary conditions. At the wall
the conditions are @, ¢’ =0. For channel flow, the centreline conditions are given as

@', @' =0 for the (least stable) symmetric modes. For boundary layer flows the outer

condition at the edge of the boundary layer is given by ¢, ~ exp(— ay) . The OS equation
(1), along with its appropriate and relevant boundary conditions for a given problem,
constitutes an eigenvalue problem which is equivalent to the existence of a functional
relationship of the form F(a, B, R) = 0. In other words one may make an initial choice of
any two of the three parameters o, B, R, and, the third comes out as part of the answer for
the solution of the eigenvalue problem. Further, for the general eigenvalue problem, all
three of the variables o, 3, R could be complex. For physically relevant problems however,
the Reynolds number R is real as an automatic initial choice, given by the length and
velocity scales of the problem. Thereafter, the functional relationship ensuing from the
eigenvale problem reduces to either p = B(a), or, o = a(p). Classically, this has given rise
to two classes of problems, viz. the temporal problem and the spatial problem. In the
temporal problem an initial choice of a real o is made, and B is obtained as an eigenvalue.
In general B emerges as complex, i.e. B = B, + B;. As may be seen from the form
Y~ ¢(y) exp [l(ax - ﬂt)], stability or instability is obtained according as B; < 0 or f3; > 0.
The temporal problem eigenvalue is also commonly obtained in terms of the phase velocity
¢ = ¢, + ¢;. Since a is real, the sign of ¢; determines stability or instability exactly as B, does.
Analogously, in the spatial problem an initial choice of real B is made, and o emerges, in
general complex, as part of the eigenvalue problem, viz. o = a, + «;. Again, stability or
instability is obtained according as o; > 0 or o; < 0. Gaster [2] found an equivalence
between the temporal and spatial problems, which aspect will be discussed later. Moreover
the magnitude of o, or B;, is small compared to the real parts, and usually either of «, B,
c; is chosen as an important measure of a small parameter in the problem. We will use
this measure throughout in this paper.
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Now, as more effects like non-parallelities and non-linearities are taken into account, the
OS equation gets modified. The modifications are usually of O(c;). Let the original OS
equation (1) be written in opgrator form as L(a, ¢)¢ = 0, and let this equation be modified
by an O(c;) term, viz. G¢, where G is another operator, so that

L(a,c)p=Gg. @)
New eigenvalues a, ¢ may be found by solving the modified equation (L — G) ¢ = 0.
However, if @,C be the eigenvalues corresponding to the original OS equation, viz.

L(@, C )b = 0, then, our intention is to find the correction in & or C, that is brought about

by the presence of the additional term G¢ in (2). So we consider a variational form of (2),

denote the corrections as ¢’ and &' respectively for the temporal and spatial problems, and
obtain the variational equations as follows:

Ld,é)¢+c[(9(L—¢)j ] =G¢ ; 3)

oc

L(d,é)‘¢+a[[a—(£ﬂ]ﬂ] ‘ =G4 ; )

oa

It is easy to work out the terms corresponding to c'and a', respectively in (3) and (4).
These are given respectively as

L(d.¢)¢ =c'iaL,(d,¢)p + G4 ; (5)
where, L ¢ = (¢" -a 2¢); and,

L(d,8)p=a'iL,(@,¢)¢+ G ; 3
where, ignoring O(1/R) terms, L, =- [u(DZ - )- Jar* (u - C)- u"](b where,
D = d/dy. The operators L, and L, are written in the above particular forms, to be

compatible with earlier published literature.

The above equations (5) and (6) lead to a very simple way of determining either of the
corrections ¢’ or @' . This is based on the solvability condition of the equation L( &, € )¢ =
RHS, when a non-zero right hand side exists. For the temporal problem this is given as:

[" olctiaL, (@.8)¢ + Ggldy =0 ; @)

and, for the spatial problem this is given as:

[ 6laiL,(@,¢)é +Ggldy =0 ; (®)
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where, in (7) and (8), 6 is the adjoint eigenfunction to the equation L = 0. Also the upper
limit of integration up is c for the boundary layer case, and is the channel centreline for
the channel flow case.

The results as given by (7) and (8) constitute a very powerful method of looking into
various aspects of the stability problem, and this result is called herein the Principle of
Additive Augmentation. That is to ‘say that, if G¢ is small (O(c;)), then an additive
correction results in the eigenvalue as given by either of equations (7) or (8). Further, the
associated modification of the eigenfunction ¢ in view of the extra term G¢ is small. We
will look at various aspects of the stability problem based on this principle, in the rest of
the paper.

GASTER'S THEOREM

Gaster's [2] theorem can be proved using the above principle. Let us conceive of a general

spatio-temporal problem, which is equivalent to having “corrections' in both Cand & . The
resulting equation then becomes:

Lia, B)g- piL,(g. B) ¢- aiL, (e, B)p=0 ; )

where, ' =ac’, and notionally ' is the correction to /3, where as we know 3 =ac.

Now, let us imagine‘that we are looking at the temporal problem so that ¢ is real and Bis
complex. Our aim will be to derive the eigenvalue for the corresponding spatial problem
based on the eigenvalue of the temporal problem. We now set ' =- f., because this

renders P real. Thereafter, we try to find the "correction' in &', by treating the ' term as

though it were like the G¢ term as in (6). The "correction' now comes from the solvability
condition as in (8), and this is given as follows:

' " olL(a. B)s)d
a'=-p fp ‘ 'BA¢ g (10)
[ olL.(é. 2)oay

It is seen from (10) that the correction &, which can now be called o, has sign opposite to
Bi. This is consistent with the respective signs of B; and o; being opposite, for stability or
instability. The correction as in (10), could also have been obtained starting from the spatial
problem and transforming to the temporal problem, and, exactly the same answer as in (10)
would be obtained. Another observation that can be made is that the ratio of the two
integrals in (10), is virtually entirely a real quantity, irrespective of the manner in which ¢
is normalised.

We will now show that the ratio of the two integrals is the same as the group velocity c,,
which is defined as ¢, = dp/da. This will follow from a simplified "proof' of Gaster's
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theorem given below. Recalling that, at a given R, the eigenvalue problem gives B = B(a).
it follows that

op = ( 'ija~c oa . (11)

da

Supposing now we start from the temporal problem in which B is complex, i.e. B = B, + B..
Next we choose 6f in (11) as 8B = - B, is small in magnitude). This renders B, real. And, the
associated correction 8o now becomes do. = «.

This completes the proof, of conversion of the temporal problem to the spatial problem
and the result is given by the well-known Gaster theorem [2]

b ﬂi = cga| (12)
One important result that may be seen now directly is that the ratio of the two integrals in
(10) is actually equal to the group velocity, that is

9[L( B)s)ay
[ ol gleley

This important result will be used at many places later on in this paper.

Another observation that may be made from (9-13) is that the result of converting from
temporal to spatial problem, and vice versa, can be generalised to uny spatio-temporal

case lying in between these two problems. For instance if the correction B'in (10) is

chosen as 3’ =- A . where X is an arbitrary factor ~ O(1), then, the correction &’ gives
1 o

the eigenvalue of the spatio-temporal problem with [ = B -Af, and a = a+a'.

We desist from dwelling on the question as to whether, in common physical situations, the
spatial problem exists, or the temporal problem exists, or a spatio-temporal problem exists.
Guided by experimental results, one may say that, for locally induced disturbances at a
point, using for instance a vibrating ribbon, the spatial problem exists. However, what will
be shown herein is that the temporal problem can lead us to virtually all the answers
corresponding to the spatial problem, and the ‘temporal problem is somewhat easier to
solve.

THE NON-PARALLEL PROBLEM

Non-parallel effects come in when the mean flow is slightly diverging as in case of
boundary layer flow over a flat plate. The problem may be formulated either by a fixed
length scale (FLS) formulation, or by using a variable length scale (VLS) formulation, like
using for instance the similarity variable. The final answers are no different using either
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formulation. Some typical results for non-parallel effects are reproduced herein (figs. 1-4)
from Sen and Thomas [10] based on the adjoint method (A), and Sen et «/. [11] based on
energy methods (E). In these figures the experimental results of Klingmann e al. [6] are

also shown. Also, in these figures, F = (B/R) x 10° is the well-known frequency parameter.
Our focus of interest will be the adjoint method, which is the same as the method based on
the Principle of Additive Augmentation discussed herein.

One of the features of non-parallel analysis, as pointed out by Gaster [3] first, is that
different monitorable properties (like the inner maximum of the disturbance velocity u;, or
the outer maximum of the disturbance velocity ug) have slightly different growth rates.
Neutral curves based on u; and u, are shown in figs. (1-2). These subtle changes come
about because, as one moves downstream along the plate, the local Reynolds number
changes. Consequently, the eigenfunction continuously changes in shape. Thus. different
monitorable properties show slightly different growth rates. and thus a set of neutral curves
are obtained, rather than one single neutral curve.

Before discussing the above points further, let us look at the full non-parallel equation for
¢, for the flat plate case, based say, on the fixed length scale (FLS) formulation. Here, &, is
a fixed length scale which is of the same numerical order as the boundary layer thickness,

and & is the (varying) boundary layer thickness given as & ~~/vx/U . One needs to make
further the Parabolized Stability Equation (PSE) approximation (given by Bertolotti e al.
[1]). which states that derivatives in x of ¢, need be retained only upto first order, i.e. only

((3¢/5X)- terms need to be retained. Further, after retaining terms upto O(R'), the
equation for ¢ is finally given as

Losp+Lwg =L, (ZJ (14)

where Ly is the Orr-sommerfeld operator referred to as L earlier. and L., is the additional
non-parallel operator given as follows:

Lt = )+ -3 o0
(15)

where @ is the Blasius stream-function for the mean flow. Experience shows that. if one

settles for a little loss of accuracy, the non-parallel problem can still be defined quite
faithfully even after dropping the Lxp¢ term. The reduced problem is now given as

L(u.c)(b:L:[ii?—j : (16)

cX

where the subscript “OS' has been dropped from the operator L(a, c) in (16). We note
therefore that even this reduced problem is given by a partial differential equation. and the

question is what is one to do with the (agb/ﬁ\) term. One way is to do marching in the x
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direction as outlined by Bertolotti et a/. [1]. However. there is an alternative way of solving
the problem as'has been described in Sen and Thomas [10]. Some of the relevant parts of
the Sen and Thomas method are discussed here.

First of all, in a problem like channel flow where the local Reynolds number remains
unchanged in the downstream direction, there is no change in the shape of ¢ in the
downstream direction. Therefore, one may set (0¢/3X): 0'in this particular problem, and,
(16) reduces to the ordinary differential equation Lo = 0. In the case with non-parallel
effects, as for instance in boundary layer flow, the local Reynolds number changes
downstream. Therefore, the shape of ¢ changes, though marginally, continuously

downstream. We may treat this problem based on the principle of additive augmentation.
Based on the spatial problem we have from (6) that

L(d,é)¢=a’iL2(d,é)¢+Lz[g—¢). an
2 .
The behaviour of ¢ may be given as
o S (18)
ox

where L,y is the shape change part and is by definition orthogonal to the eigensolution, viz.

f&z,{dyzo. (19)
Substituting (18) in (17) one obtains

L(¢.8)¢ =il (c,¢)g+ AL g+ L,y (20)

The solvability condition of (20) is given as

[ OlicLog+ AL,6+ Lo yldy=0. 1)

Note in (19) and (21) the upper limit of integration is o, i.e. for boundary layer problems.
In view of (19), equation (21) gives the following important result. that.

& =R (22)
The result can be called the Principle of Exchange of Growth Rates. 1t stipulates that if a
size change is proposed in ¢, by a (exponential) A, then, there is a corresponding reduction
in the growth rate in the eigenvalue, by the same factor A, in view of the correction '
being given by o' =iA .

The above thus leads us onto the concept of Optimal Normualisation. viz. keeping A = 0.
Which means that from station to station in x, the normalisation of the ¢ function should be
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so chosen that there is no size change in ¢, and (a¢/3x)=l only. This condition is
realised in numerical work by keeping

fﬁLv(—aﬁjd=0. (23)
P2 g

X

Furthermore, after optimal normalisation has been carried out. there is no need to refine ¢
any further beyond what is given from the eigensolution corresponding to L$ = 0. This is
because, as has been mentioned in section 2 earlier, the correction in ¢ is marginal, since

the RHS in (23) is small after optimal normalisation.

The above discussion leaves us in a happy position, because, after optimal normalisation
the spatial problem also reduces to the solution of a quasi-ordinary differential equation,
namely L(a, B) =0, where B is real.

Thus, once both the spatial and temporal problems are reduced to the solution of the
equation L(a, B) = 0, then, Gaster's theorem can be applied meaningfully to both, and, the
spatial and temporal problem eigenvalues may be meaningfully interchanged as before,
using the group velocity.

THE NON-LINEAR PROBLEM

We next consider the non-linear problem. In view of the discussions in section 3 above, we
will make two simplifications at the outset. First, we will make the quasi-parallel
assumption; and second, we will assume that optimal normalisation is being adopted so that

L, (5¢/5X) term may be neglected. A non-linear formulation may be obtained by
expressing the disturbance ¢ as a sum of the fundamental ¢, and its harmonics as follows:

V= i @, exp{nia(x -ct)} ; (24)

n=-o

where, the fundamental is ¢, and is given by the eigensolution of L, = 0. ¢, is the "zero-th'

harmonic and represents the distortion in the mean motion, and. @, =@, where (~)

represents the complex conjugate. Upon substituting this form in the full two dimensional
Navier-Stokes equations (not the linearized one), one obtains the following equation at any
harmonic level 'p', with p= 0, as follows:

ipal(u-c)(g;-pa’y,)- U"%]’%(&I’é'“ 2pa’g)+pla’s,)
=ipa(NL,); ©@5)

where the non-linear terms N, are given as follows:

Journal of Mechanical Engineering Research and Developments, 1'0l.21-22,1999



Linear and Non-Linear Stabilin: 33 Sen and Hedge

’ - e nEs p-n :
Lpa¢p = lpa(Np )= lpa Z ot E ¢(p-n)fn is T ¢(p-n) f‘n

n=0

SO e R iy
+1paz ;¢(n+p) tn T p ¢(n+p) f”]

=

~

: - e n-p s
+1pa Z -;¢(n-p) fn —T¢(n—p) fnj' (26)

n=(p+1)

where, Ly, is the left hand side operator in (25). f, =@/ -n’a’¢, .andp > 1:n>0.

It is customary to assume the by to be slowly varying functions of either the time variable 7
or the space variable x. We ignore these effects in the harmonics p = 2. as these are
equations forced by the fundamental and are forced solutions (i.e. non eigen-solutions) of
Orr-Sommerfeld equations. However, for the fundamental equation for ¢,, the effect of
slow variation in space or time is lumped together as either a correction ' in space, or ¢’
in time, or in both. Therefore, similarly as in (9), the equation for ¢,may be written as

L,(a.¢)¢, -c'ial g, -aiL,g, =iaN,, 27)
where, the operators L, and L, have been defined following equations (5) and (6). Further
the operator L, is the Orr-Sommerfeld operator, and &, ¢ are eigenvalues corresponding to

the eigensolution of the linear problem L, (a, ¢) ¢, = 0. Also, the lumped non-linear term
N,. comprises harmonics which are all forced by the fundamental. Thus, the amplitude
norm for any higher harmonic dp, p 2 2 is given as ~ O(e"), where ¢ is the amplitude norm
for the fundamental ¢,. Thus N, may be treated as being like a G¢ term as in (2), since this
term is intrinsically related to the amplitude of the fundamental term.

It needs to be remembered that ¢’ and o'are both zero for the equations for the higher
harmonics corresponding to p > 2, and the equation is given by

Lpa(d.é)gzﬁp:ipaNp - p=2 % (28)

In (28) the operator L,, contains the eigenvalues d‘",(ﬂ:corresponding to the fundamental
¢, i.e. for p = 1. These are therefore not the eigenvalues for equations corresponding to p >
2. Thus there is no difficulty in obtaining the forced solutions for ¢p, from (28).

A special mention needs to be made regarding the zeroth harmonic, i.e the ¢, term. We
reproduce the general form of this equation, retaining the effect of slow variation with
respect to ¢ and x, as follows:
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O ol Nl U L0 o P e
¢o+u ¢o_u ¢0__ 4 :laa—yzz p(¢p¢n'¢w¢n)' L

ot ox o R

The above equation has created some problems in the past. because. at least for the
temporal problem the mean motion equation could give rise to singularities, as has been
discussed in Sen and Venkateswarlu [8]. To illustrate, it it is assumed that the temporal
problem has a a growth rate ¢; given by the eigenvalue problem. and if the mean distortion

p=1

in'u is given as U, =¢(') then, by integrating (29) twice with respect to y. and assuming
unchanged mean pressure gradient, one obtains the equation for uy as follows:

1 i 5 . T T e Y 3
2gct -l—{—ud =1 Z P(¢p¢p '¢p¢p)' &
p=1

The complementary equation

1
2ac,u, -Eu;’ =0 ; (31)

can have eigensolutions in channel flow, when ¢; < 0, with boundary conditions uy = 0; y =
0 and u,=0; y=1 (centreline). Further, similar eigensolutions can be obtained in

boundary layer flow as well, as shown by Sen and Vashist [12]. When the complementary
solution (31) exists, then, with (in general) a non-orthogonal right hand side as in (30) the
solution blows up.

Actually the mean motion singularity problem can be avoided if the temporal problem is
considered as a particular case from a general class of spatio-temporal problems as given
by (29). From this perspective the boundary condition to be satisfied at the wall is that

both ¢y =0, ¢y =0,y =0. When this is stipulated the complementary equations

R =) (32)
ot R

w0l Lo (33)
ox gx+ R

respectively for the temporal and spatial problems, do not have eigensolutions.

Once the singularity problem for the mean motion is sorted out, one may consider
neglecting the 0 / ot and 0 / Ox terms in (29). One way to do this is by the equilibrium
amplitude assumption of Reynolds and Potter [7], in which a finite equilibrium state is

assumed ab initio. This is equivalent to stipulating ab initio in (27) that, ¢, +c¢"=0in the

temporal problem, or that, @ + &' =0 in the spatial problem. Even without making these

assumptions the 0/ ot and 0 / 0x terms in (29) are both ~ O(c;). This may also be seen in a
plot of the modification in c;, with the amplitude |A[>, for instance in fig. (4) of Sen and
Venkateswarlu.
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Thus the simplified version of the mean motion equation (29) is given as

(‘)1

ayz i p(¢p¢7p/-5p¢;;):NU‘ (34)

Looking at the equations (27), (28) and (34) one can now see, that, within limits of
“reasonable” simplification, the non-linear equations for both the temporal and spatial
problems are more or less of the same form. Some thought needs to go into not only the
methods of solution of the non-linear problem, but also, how ‘most' of the answer can be
extracted based on simplified procedures.

Dt ca
‘E¢() =l

There are two broad methods (apart from multi-deck asymptotic procedures) of solving the
non-linear problem. One is by the amplitude expansion method postulated by Stuart [14]
and Watson [15], based on which extensive calculations have been done by Herbert [5],
Sen and Venakateswarlu [8], Sen er al. [9], Sen and Vashist [12], and others. In this
method the ¢, functions are expanded in powers of the amplitude A of the fundamental.
The growth rate is also expanded in powers of 4 by the Stuart-Landau equation, which is
given for the temporal problem as follows:

2
d—A:aciA+iaAZ K, A" (35)
dt n=l
where, K, are called the Landau coefficients. An analogous expression can be sought for
the spatial problem. If the simplified equations (27), (28) and (34) are considered, then, all
the Landau coefficients K, are transformed from spatial to temporal problem, or vice
versa, by means of the Gaster transform. Thus, it is seen that the Gaster tarnsform is valid
Jor the non-linear problem based on the method of amplitude expunsions.

The amplitude expansion method, though originally intended to be a proper asymptotic
expansion in terms of the amplitude, is not a fully rational method and eventually depends
on the numerical convergence of the Stuart - Landau equation. Details of numerical work
may be seen in the papers of Sen and others listed above. Perhaps a more direct method has
evolved from the works of Herbert [4], culminating in the work of Bertolotti ef uf. [1]. In
this method the starting point is usually equations like (27), (28) and (34), with non-parallel
effects explicitly included. The equations are solved by marching along x. The amplitude at
the next station is obtained from the growth rate estimated at the previous station.

The method of Bertolotti er al. [1] can be simplified even further by making minimal
compromises. First, optimal normalisation need be used for ¢, at each station in x. Second,
for the spatial problem, the correction &' can be found from the solvability condition of
(27), namely

[ 6laL,g +aN,)dy=0. (36)

Thirdly, accepting from the earlier discussions on the Principle of Additive Augmentation
that, the shape change in the eigenfunction is relatively small, no further iteration is needed
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for ¢, beyond what is given by the linear eigensolution. With these compromises, an
overall non-linear growth rate can be estimated at each station by using the correction ' at

each station. Finally it is seen that for this non-linear method also. the Gaster transform
Jrom spatial to temporal problem, and vice versa, is valid.

A final word is in order regarding the non-linear term N,, and N, in general. Each harmonic
level p is A in order of magnitude, where A is the amplitude norm for the fundamental.
Yet, due to certain difficulties, one cannot make a rational asymptotic expansion in powers
of A. At best one can stipulate that the entire N, is ~ O(o;) ~ O(c;). Nevertheless, one can
certainly expect, (and one does get) reasonably rapid numerical convergence as one
considers higher and higher harmonics. In fact numerical convergence decides the highest
order of p to be retained in the calculations.

This work was supported by grant number 22 (254) /96 EMR-II of the Council of Scientific
and Industrial Research (C.S.I.R.), India.
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Figure 1. Neutral curves for u; and u, for FLS.
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Figure 2. Neutral curves for u; and u, for VLS.
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Figure 3. Growth rates for u,; at F=140.
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Figure 4. Cumulative growth rates for u; at F=140.
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