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Abstract: This paper discusses. the Orr-sommerfeld (OS)
equation, extended forms of the OS equation due to non-
parallel and non-linear effects, and discusses the relevance of
the Gaster transform for non-parallel and non-linear cases. It
is seen that, within 'reasonable' limits. the Gaster transform
for equivalence ofspatial and temporal problems continues to
hold for both non-parallel and non-linear cases. Also. a
simplified procedure is outlined for dealing with non-linear
problems.
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INTRODUCTION

Over the last several decades much has been contributed to the understanding of the
phenomenon of laminar to turbulent transition, in parallel and near-parallel laminar shear
flows, by the use of the Orr-sommerfeld (OS) equation. Here we discuss some aspects of
stability calculations that may be made, using the OS equation and extended versions of the
OS equation accounting for non-parallel and non-linear effects. Our attention will be
confined to wall-bounded flows, like channel flow and boundary layer flow, although, the
results could carry over almost entirely to.cases of free shear flows as well.

One of the interesting theorems to look at, is the Gaster [2] transform citing the equivalence
of the temporal and spatial problems. Within ceftain limits, this equivalence is seen to carry
over to non-parallel and non-linear cases also.

We begin by giving a very brief jntroduction to the OS equation. Starting from the
linearised Navier-Stokes and continuity equations, and introducing a 2D disturbance

streamfunction ry of the form 0 - Q(V) ""p [t(-, 
- 4)], ". A - d(V) "*o [ia(x - .t)] ,

where cr is the spatial wavenumber, p is the temporal frequency, c = B I a is the phase

speed, and x, y are co-ordinates respectively along the flow and normal to the wall, one
obtains the OS equation given below:

iafiu- 
")(0" 

-o'o)-u" o]-*(r"" -zo'o" +a'6)=s .

where, in (l), primes (') denote differentiation with respect to y, and R is the Reynolds
number based on a suitable length scale and suitable velocity scale pertinent to a particular
problem. Two dimensional disturbances are considered in view of the well known Squire's
theorem that, for linear stability theory, 2D disturbances are more unstable than 3D ones,
Actually in the initial phase of the growth of linear disturbances, the disturbances may

(l)
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grow as 2D disturbances for quite some time, till C-type and H-type 3D bifurcations take
over. We will confine our attention to 2D disturbances here.

The OS equation as given by (l) is exact only for a strictly parallel mean flow, like channel
flow. For slightly non-parallel flows, like in boundary layer flows, the so-called 'quasi-
parallel' approximation needs to be made, to get the form of (l). In this approximation the
mean velocity v in the transverse direction is small and is ignored, i.e. v - 0. Also ignored
are the weak changes with respect to x of the longitudinal mean flow velocity u, i.e. 0u I 0x
- 0. However, at each local station the local distribution of rz is used in the OS equation
(l). This takes care ofthe so-called non-parallel effects to a large extent.

Before going into various aspects of the calculations based on the OS equation, and
extended forms of the OS equations, it will be pertinent to look at an operational principle
reported by Sen and Thomas [0]. This is discussed next.

AN OPERATIONAL PRINCIPLE

The OS equation (l), has to be solved with appropriate boundary conditions. At the wall
the conditions are 0, Q'=0. For channel flow, the centreline conditions are given as

{', Q"' =0for the (least stable) symmetric modes. For boundary layer flows the outer

condition at the edge of the boundary layer is given by i, - exp( ory') . The OS equation

(l), along with its appropriate and relevant boundary conditioris for a given problem,
constitutes an eigenvalue problem which is equivalent to the existence of a functional
relationship of the form F(c, I, R):0. In other words one may make an initialchoice of
qny two of the three parameters o, B, R, and, the third comes out as part of the answer for
the solution of the eigenvalue problem. Further, for the general eigenvalue problem, all
three of the variables cr, B, R could be complex. For physically relevant problems however,
the Reynolds number R is real as an automatic initial choice, given by the length and
velocity scales of the problem. Thereafter, the functional relationship ensuing from the
eigenvale problem reduces to either F = F(a), or, a = cr(p). Classically, this has given rise
to two classes of problems, viz. the temporal problem and the spatial problem. In the
temporalproblem an initialchoice of a real a is made, and p is obtained as an eigenvalue.
In general p emerges as complex, i.e. 0 = 9, + 9i. As may be seen from the form

O - Q(V)e"p [t(* - B)l,stability or instability is obtained according as 0i < 0 or p; > 0.

The temporal problem eigerivalue is also commonly obtained in terms of the phase velocity
c = cr + q. Since cr is real, the sign of c1 determines stability or instability exactly as p; does.
Analogously, in the spatial problem an initial choice of real p is made, and c emerges, in
general complex, as part of the eigenvalue problem,viz. d. = ch + orr. Again, stability or
instability is obtained according BS cr; ) 0 or cr; < 0. Gaster [2] found an equivalence
between the temporal and spatial problems, which aspect will be discussed later. Moreover
the magnitude of cr1 , or B1, is small compared to the real parts, and usually either of a,, 8,,
c1 is chosen as an important measure of a small parameter in the problem. We will use
this measure throughout in this paper.
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Now, as more effects like non-parallelities and non-linearities are taken into account, the

OS equation gets modified. The modifications are usually of O(c;). Let the original OS

equation (l) be written in operator form as L(a, c)$:0, and let this equation be modified

by an O(c;) term, viz. G$, where G is another operator, so that

L(a,cfu --GO . (2)

New eigenvalues cr, c may be found by solving the modified equation (L - G) 0 : 0.

However, if A,e be the eigenvalues corresponding to the original OS equation, viz.

L( A, t, )O : 0, then, our intention is to find the correction in d, or t , that is brought about

by the presence of the additional term GQ in (2). So we consider a variational form of (2),

denote the corrections as c' and a'respectively for the temporal and spatial problems, and

obtain the variational equations as follows:

L(a,e)0."'l.[.ug')] 
"l 

=GQ ;

L( oc )")uu

L(a,e)o . "l(+p),],, = G o :

It is easy to work out the terms coresponding to C' and d', respectively in (3) and (4).

These are given respectively as

L(a,e)O-c:aLja,e)0+GQ; (5)

where, L,Q = (O' - o= Q); u,na,

L(d,e)O=d:L,(a'e)0+G0: (6)

where, ignoring o(l/R) terms, LrQ= - ["(O' - o')-2a'(u - 
")'u"]O 

where'

D : d/dy. The operators L1 and L2 are written in the above particular forms, to be

compatible with earlier published literature. 
,

The above equations (5) and (6) lead to a very simple way of determining either of the

corrections c' or d'. This is based on the solvability condition of the equation t-( ri, d )O =

RHS, when a non-zero right hand side exists. For the temporal problem this is given as:

f' ef"'ior,(a,e)O+ G/]dy = o ;

and, for the spatial problem this is given as:

f,' elatr,(a,e)O *c/ldy = e ;

(3)

(4)

(7)
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where, in (7) and (8), 0 is the adjoint eigenfunction to the equation LO : 0. Also the upper
limit of integration up is a for the boundary layer case, and is the channel centreline for
the channel flow case.

The results as given by (7) and (8) constitute a very powerful method of looking into
various aspects of the stability problem, and this result is called herein the Principle of
Additive Augmentation. That is to say that, if G$ is small (O(ci)), then an additive
correction results in the eigenvalue as given by either of equations (7) or (8). Further, the

associated modification of the eigenfunction $ in view of the extra term G$ is small. We
will look at various aspects of the stability problem based on this principle, in the rest of
the paper.

GASTER'S THEOREM

Gaster's [2] theorem can be proved using the above principle. Let us conceive ofa general

spatio-temporal problem, which is equivalent to having 'corrections' in both e ana d . the
resulting equation then becomes:

t(a,i)O- B\L,(a,B)Q- a'tL,(a,P)6=o ; (e)

where, f' =ac', and notionally B' isthe correction to p, whereas we know f = de.

Now, let us imagine that we are looking at the temporal problem so that d is real anO p is

complex. Our aim will be to derive the eigenvalue for the corresponding spatial problem

based on the eigenvalue of the temporal problem. We now set P' = - P , because this

renders B real. Thereafter, wetryto findthe'correction'in a', bytreating the p' term as

though it were like the G$ term as in (6). The 'correction' now comes from the solvability
condition as in (8), and this is given as follows:

(10)

It is seen from (10) that the correction a', which can now be called cr;, has sign opposite to
p1. This is consistent with the respective signs of p; and q being opposite, for stability or
instability. The correction as in (10), could also have been obtained starting from the spatial
problem and transforming to the temporal problem, and, exactly the same answer as in (10)
would be obtained. Another observation that can be made is that the ratio of the two
integrals in (10), is virtually entirely a real quantity, irrespective of the manner in which {
is normalised.

We will now show that the ratio of the two integrals is the same as the group velocity c*
which is defined as cs : dp/da. This will follow from a simplified 'proof of Gaster's
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theorem given below. Recalling that, at a given R, the eigenvalue problern gives B = 0(c).
it follows that

(l l)

Supposing now we start from the temporal problem in which B is conrplex. i,e. g = 0, + 0i.
Next we choose 6p in (ll) as 6B: - 9r is small in rnagnitude). This renders p1 real. Arrd. the
associated correction 6cr now becomes 6cr : a;.
This completes the proof, of conversion of the temporal problern to the spatial problem,
and the result is given by the well-known Gaster theorem [2]

- Fi=crdt ( l2)
One important result that may be seen now directly is that the ratio of the two integrals in
( l0) is actually equal to the group velocity. that is

^ _ f' elr,(a.B)olo,
'e-;oJ-;\--T-- (t3)

This important result will be used at many places later on in this paper.

Another observation that may be made from (9-13) is that the result of converting from
temporal to spatial problem, and vice iersq, can be generalised to ury, spatio-tenrporal
case lying in betyveen these two problems. For instance if the correction B' in (10) is

chosen as p' - - 2F,. where L is an arbitrary factor - O(l), then, the correction d'gives

the eigenvalue ofthe spatio-temporal problem with B = F - lf, and d = d + a' .

We desist from dwelling on the question as to whether, in common physical situations. the
spatial problem exists. or the temporal problem exists, or a spatio-tenrporal problem exists.
Guided by experimental results, one may say that, for locally indr"rced disturbances at a
point, using for instance a vibrating ribbon, the spatial problem exists. However. what will
be shown herein is that the lemporal problem can lead us to virtuullt' ull the unsv'ers
corresponding to the spotial problem, and the'temporal problern is somewhat easier to
solve.

THE NON-PARALLEL PROBLEM

Non-parallel effects come in when the mean flow is slightly diverging as in case of
boundary layer flow over a flat plate. The problem may be formulated either by a fixed
length scale (FLS) formulation, or by using a variable length scale (VLS) formulation, like
using for instance the similarity variable. The final answers are no different using either

,lournal ol Mechanical Engineering Research and Developntents, l'o1.2 l -22, I 999
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formulation. Some typical,{e:ults for.4op.parallel effects ale reproduced herein (figs. l{)
from Sen and fhomas [l0] based on the adoint rnethod (A), and Sen er a/. Itt] based on
energy nrethods (E). In these figures the experimental results of Klingmann e! 

-al. 
[6] are

also shown. Also, in these figures, F = (B/R) x 106 is the well-known frequency paralneter.
Our focus of interest will bethe adjoint method, which is the same as the method based on
the P r i n c i p I e oJ' A ddit iv e A ugm ent al i on disqussed herein.

Oqe gf the ,ft11qrqs of nqn-parallql analysis, qs pointed out by Gaster [3] first, is thar
differeni moniiorable FrQP-erties (like the inner maSi4um o,f the disturbance velocity u;, or
the oute.r ,maxjmvln of rhe distutbqnca yelocity u6) ,haye slightly different growth iates.
Neutral curves b4s9d on u1 and us are shown.in figs. (l-2). These subtle changes come
about .because, as one moves downstream along the plate, the local Rey'nolds nunrber
chartges. Consequently, the eigenfunction continuously'changes in shape. Thus. diff'erent
monitorable proper:ties show slightly different growth rates. and thus a set of neutral curves
are obtained, rather than one single neutral curve.

Befoie discussi.4g the above points further, let us look a.t the full non-paraltel equation for

Q, for the flat plate case, based say, on the fixed length scale (FLS) formulation. Here, 6q is
a hxed length scale which is of the same numerical order as the boundary layer thickness.

and 6 is the (varying) boundary layer thickness given as d - Jtx/U . One needs to make

further the Paraholized Stabi!lty Equalion /PSE1 gpproximation (given b1 Bertolotti el {r/.

Il]). which states that derivatives in x of Q, need be retained only upto first order, i.e. only

(aptax)- teras negd to be retained. Further, after retaining terms upro O(R-r), the

equation for $ is finally given as

Lord+L^or=t,(#) ;

wherc Lqy5, is the Orr-sornrnerfbld operator referred to as L carlier. and Lrp is the additional
non-parallel operalor given as follows:

L.o.d = - *kn
(ls)
wltere Q is the Blasius strear.rl-function for the 

,mean 
flqw. pxperience shows that. if one

settles fer a little loss of accuracy, the non-pirallel problem can still be defined quite

faithfully even after dropping the Lnr,$ term. The reduced problem is now given as

' + Yy")o' + (a - yu )(0"' - "=/')l;

( l4)

( l6)L(,. cM = L, (#) 
'

Wfer.e the subscripl'9S'has been dropped from th9 opglalgr l-(9, c) in (f 6) we nete
therefore that even this reduced problem is given !y a partial differential equatiop. and the

qugstion is what is onc to do with the (d/Sx)tertn. One way is to do prarching in thex
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direction as outlined by Bertolotti et al . [l]. However. therc is an alternative way of solving
the problem as has been described in Sen and Thomas [0]. Some of the relevant parts of
the Sen and Thomas rnethod are discussed here.

First of all, in a problern like channel flow where the local Reynolds number remains
unchanged in the downstream direction, there is no chanqe in the shape of $ in the

downstream direction. Therefore, one may set (AOlAx):0 in this parlicular problem. and,

( l6) reduces to the ordinary differential equation LO : 0. ln the case with non-parallel
effects, as for instance in boundary layer flow, the local Reynolds number changes
downstream. Therefore. the shape of $ changes, though marginally. continuously
downstream. We may treat this problem based on the principle of additive augnrentation.
Based on the spatial problem we have frorn (6) that

L(a,e\O=d'iL,(A.e)O +

The behaviour of $ may be given as

a6- -^=/LQ+X:dx

f n'xaY =o

Substituting ( I 8) in ( I 7) one obtains

L(A.6)O = a:Lt(a.e)p * ,LL,Q +L.x .

I-he solvability condition of (20) is given as

f eli"r,p + uL,O + L,xfdy = o .

',(x) (17)

( l8)

where L21 is the shape change part and is by definition orthogonal to the eigensolution, viz.

( le)

(20)

(21 )

Note in (19) and (21) the upper limit of integration is m, i.e. for boundary layer problems.
ln view of (19). equation (2 l) gives the following imporlant result. that.

a'=i), (ll )

The result can be called the Principle of' Exchunge o/ Grtn,th Rrrlc,r'. ll stipulates that if a

size change is proposed in $, by a (exponential) 1,, then, there is a correspondingreduction

in the growth rate in the eigenvalue, by the same .factor L. in view of the correction a'
being given by a' =i)" .

The above thus leads us onto the concept of Optimal Nornrulisutittn. viz. keeping ). = 0.

Which rneans that frorn station to station in;r, the normalisation of the $ function should be
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so chosen that there is no srze change in
realised in numerical work by keeping

32 Sen and Hedge

6. ana (OQ/O*)= Z onty. This condition is

(23)

Furthermore' after optimal normalisation has been carried out. there is no need to refine $
any further beyond what is given from the eigensolution corresponding to Lo : 0. This is
because. as has been rnentioned in section 2 earrier, the correction in dis mar_ginar, since
the RHS in (23) is srnall after optimal normalisation

The above discussion leaves us in a happy position. because. after optintul norntalisati,n
the spatial problem al'so reduces to the solution of a quasi-ordinun'dillbrentia! equation.
namely L(c, F) :0, where p is real.

Thus, once both the spatial and temporal problems are reduced to the solution of the
equation L(s, F):0, then, Gaster's theorem can be applied meaningfully to both, and, the
spatial-and temporal problem eigenvalues may be meaningfully iiterchanged as beiore,
using the group velocity.

THE NON-LINEAR PROBLEM

We next consider the non-linear problem. ln view of the discussions in section 3 above. wewill make two simplifications at the outset. First, we will make the quasi-parallel
assumption; and second, we will assume that optimal normalisation is being adoptej so that
Lr(Ailax) term may be neglected. A non-linear formularion may be obtained by
expressing the disturban ce t! as a sum of the fundamental Q1 and its harmonics as follows:

f n,(Hd=o

rt = >. Q, exp{nia(x - ct)} ;

where,,rr. runluni.ntal is Q, and is given by the eigensolution of Lgl - 0. Qu is rhe 
.zero-th,

harmonic and represents the distortion in the mean motion , and, Q-n = /n , where (-)
represents the complex conjugate. Upon substituting this form in theJillttwo dimensional
Navier-Stokes equations (not the linearized one). one obtains the following equation at any
harmonic level 'p', with p* 0, as follows:

ipa(u - 
")(O;'- 

p=a=Qo)- u" O,f-f 0;- 2p2a:Q,n,+ p,o,Q,)

= ipa(Nlo) ; es)
where the non-linear terms No are given as follows:

(24)
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(27)

q)= ipa(No )= ipo 
,,t t i rr.,,,r,, *?''o-"'

+ipap 
t;/i,-n, i,-,- Ta, , l)

+ipa t (]/i,.,,, | -Td,,-,,, r,l 
'i. 

(26\
"i*'r\ p p )

where, Looisthelefthandsideoperatorin(25), f,,=d,,i -nto.Q,,.andp> l:n >0.

It is customary to assume the $o to be slowly varying functions of either the tirne variable I
or the space variable r. we ignore these effects in the harmonics p > 2. as these are
equations forced by the fundamental and are forced solutions (i.e. nori eigen-solutions) of
orr-Sommerfeld equations. However, for the fundamental equation fo, 0,, the effect of
slow variation in space or time is lumped together as either a correction a' in space, or c'
in time, or in both. Therefore, similarly as in (9), the equation for {lrnay be written as

L"(a,e)0, -e'iaL,Q, - a,iLrQ, = iaN, ,

where, the operators L1 and L2 have been defined following equations (5) and (6). Further
the operator Lo is the on-Sommerfeld operator, and &,6 are eigenvalues corresponding to
the eigensolution of the linear problem L" (a, c) 0r :0. Also, the lurnped non-linear term
N1, comprises harmonics which are all forced $, the ./undamentaL inur, the amplitude
norm for any higher harmonic 0p, p > 2 is given as - o(er,), where a is the arnplitude norm
for the fundamental Q;. Thus N1 may be treated as being like a G$ term as in (2), since this
term is intrinsically related to the amplitude of the fundimental term.

It needs to be remembered that c'and d,' are both zero for the equations for the higher
harmonics corresponding to p > 2, and the equation is given by

Lr,(a.e)Qo =ipal.{o ; p>2 ; (28)

In (28) the operator L* contains the eigenvalues cit,0corresponding to the fundamental
Q1, i.e. for p: l. These are therefore not the ei_qenvalues for equations corresponding to p >
2. Thus there is no difficulty in obtaining the forced solutions for $,,, frorn (2g).

A special mention needs to be- made regarding the zeroth hannonic, i.e the $1, term. we
reproduce the general form of this equation, retaining the effect of slow variation with
respect to / and x, as follows:
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#. , # " *-I r,,,,, =," #L p(0,0,:_ 0,,0,:.)

p(0,,a,:- 6,,0:)

Sen and Hedge

(2e)

(30)

(31)

(32)

133 )

The above equation has created some problems irr the past. because. at least for the
tentporal problern the tnean motion equation could give rise to singularities. as has been
discussed in Sen and Venkateswarlu [8]. To illustrate, if ir is assurned that the temporal
problern has a a growth rate c; given by the eigenvalue problenr. and if the rnean distortion
in a is given as ud = Q'o then, by integrating (29) twice with respect to,r.. and assuming
unchanged lnean pressure gradient. one obtains the equation for u4 as fbllous:

^l2ac v, - u',' -
R

The complernentary equation

i"Z
Dl

can have eigensolutions in channel flow, when c; < 0, with boundarl, conditions u6 : 0: y =
0 and u'o =Q; Y =l (centreline). Further, similar eigensolutions can be obtained in
boundary layer flow as well, as shown by Sen and Vashist [121. When rhe complementary
solution (3 l) exists, then. with (in general) a non-orthogonal right hand side as in (30) the
solution blows up.

Actually the mean motion singularity problem can be avoided if the temporal problem is
considered as a particular case from a general class of spatio-temporal problems as given
by (29). Frorn this perspective the boundary condition to be satisfled at the wall is that
both $u:0, d; = 0, y:0. When this is stipulated the cornplernentan.equarions

I
2ac,uu-*u; = O l

6d,i,'-l 
d.:.,,,_ o :

6t R"'

"ry-u"olo -!ol:" - o ;6x dx R"
respectively for the temporal and spatial problerns, do not have eisensolutions.

Once the singularity problem for the mean motion is sorted out. one may consider
neglecting the 0 I dt and 6 / dx terms in (29). One way to do this is by the equilibrium
amplitude assumption of Reynolds and Potter [7], in which a finite equilibrium state is

assumed ab initio. This is equivalent to stipulating ab initio in (27) that. c, + c'= 0 in the

temporal problem, or that, d,i + d,'= 0 in the spatial problem. Even without making these

assurnptions the d / & and d / dx terms in (29) are borh - o(ci). This rnay also be seen in a
plot of the modification in c;, with the amplitude lAlr, for insrance in fig. (4) of Sen and
Venkateswarlu.
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fhu,s,the simplified version of the mean motion equarion (29) is given as

Sen qnd Hedge

(35 )

-*r,,, =t* #f ,b,6; -6,0;): *,, (34)

Looking at the equations (27), (28) an-d (34) one can now see, rhar, within limirs of
"reasonable" sirnplification, the non-linear equations for both the temporal and spatial
problems are nlore or less of the same form. Some thought needs to go into not only the
methods of solution of the non-linear problem, but also.-how'most'oithe answer cirr be
extracted based on simplified procedures.

l'here are two broad methods (apart from multi-deck asymptotic procedures) of solving the
non-linear problem. One is by the amplitude expansion method postulated Uy Stuarilt+1
and Watson Il-5]. based on which extensive calculations have been done by Herbert [5],
Sen and venakareswarlu [8], Sen et al. l9l. Sen and Vashist [12], and others. tn inis
method the $o functions are expanded in powers of the amplitude A of the fundarnental.
The growth rate is also expanded in powers of A by the Stuart-Landau equation, which is
given for the temporal problem as follows:

+ = acil +ian i K,, IAI'" ;dt'fr
where. K,, are called the Landau coefficients. An analogous expression can be sought for
the spatial probJem. lf the simplified equations Q7), (25) and (34) are considered, th1n, all
the Lqndqu coe/.ficients Kn qre transformed .from sputial to tentp1trul problem, or vice
t'ersu, by meuns of the G(tster trunslbrm. Thus. it is seen that the Gustgt iurns/brnt is vulicl
lbr the non-lineur prohlem based on the method tl amplintle expun,si,,s.

The amplitude expansion method, though originally intende{ to be a proper asyrnptotic
expansion in terms of the amplitude, is 4ot a fully rational method and evenrually depends
on lhe numerical convergence of the Stuart - Landau equation. Details of numerical work
may be seen in the papers of Sen and others listed above. Perhaps a more direct method has
evolv.g$ from tfie works of Herbert [4], culminating in the work of Berrolotti et ul. [ll. ln
this method the starting point is usually equations like (27), (28) and (34), with non-pu.itt"l
effec1s explicitly included. The equations are solved by rnarching along,r. The amplitude at
thg pgxt station is obtained from the growth rate ebtimated at rhe previous station.

The method of Bertolotti et al. |l can be simplified even further by making minimal
compromises. First, optimal normalisation need be used for $1 at each station in x. Second,
for the spatial problem, the correction q' can be found from the solvability condition of
(27), namely

( e(aLr6l + aN, )Oy = o. (36)

Thir{ly, accepting from the earlier discussions on the Principle ol AtJditive Augmentation
that, the shape change in the eigenfunction is relatively small, no further iteration is needed

Journal oJ Mechanical Engineering Research and l)evelopments, I'o1.2 t -22, I 999



Linear ond Non-Linear Stabitit), 36

tll

I2l

t3l

L4)

t5l

t6l

t7l

t8l

tel

ll0l

tl ll

Sen und l ledge

for $1 beyond what is given by the linear eigensolution. With these cornpromises, an
overall non-lineargrowthratecanbeestimatedateachstationbyusingthecorrection d'at
each station' Finally it is seen that for this non-linear method al ,o.lho Guster trans/brm
from spatiul to Iemporul problem, and vice versa, is valid.

A final wold is in order regarding the non-linear term Ns, and No in general. Each harmonic
level p is Ap in order of rnagnitude, where A is the amplitude norm fir the fundarnental.
Yet, due to certain difficulties, one cannot nrake a rational asymptotic expansion in powers
of A. At best one can stipulate that the entire N; is - o(a;) - o(cr).Nevertheless, one can
certainly expect, (and one does get) reasonably rapid numericuf.onu..g.n.e as one
considers higher and higher harmonics. In fact numerical convergence lecides the highest
order ofp to be retained in the calculations.

This work was supported by grant number 22 (254) /96 EMR-Il of the Council of Scientific
and lndustrial Research (C.S.l.R.), lndia.
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