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Abstract: An unsteady boundary layer sub.lected to an
unsteady pressure gradient fbr a two-dimensional flow is
considered initially. The corresponding non-linear boundary
layer equations are then converted to a single ordinary
diflerential equation of a scale function by an approximate
integral method proposed by Bianchini et.allrl. As case studies,
three different steady cases are taken into account to validate
the solution procedure adopted here. Closed form solutions of
these three cases are obtained and compared with known
results.
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INTRODUCTION

A complete calculation of the boundary layer for a given body with the aid of the Prandtl's
boundary layer equations is, in many cases, so cumbersome and time-consuming that it can
only be carried out with the aid of computer. It is, therefore, desirable to pose at least
approximate methods of solutions, to be applied in cases when an exact solution of the
boundary layer equations can not be obtained with a reasonable amount of work. even if
their aciuraty is only limited. Von Karman[2] was the first to devise an approximate
method and considered a steady flow taking the potential flow simply as a function of
longitudinal distance x. The details of this integral method are found in Schlichtingt3l.

On the otherhand a number of important fluid-dynamic phenornena are governed by
boundary-layer unsteadiness. Two of these phenomena can be cited as stall flutter and
rotating stall. Because of the presence of an unsteady pressure field the behaviour of the
boundary-layer are still not well understood, though some solutions are available for
special casesl4'5'61. In view of the importance of the unsteady boundary-layer flows,
Bianchini et al. introduced a more simpler approximate method, with the help of the
powerful error function, to calculate the characteristics of the unsteady boundary-layer
flows, taking the potential flow simply as a function of time. Later this approximate
method was further developed by Socio andPozzil?l with a rigorous matliematical approach
taking the potential flow to be a function of 'x' and 't'.

The essence of the first approximate method developed by Bianchini et al. and Socio and
Pozzi is to assume a similarity solution even in those situations where similarity solutions
do not exist, and to find a suitable scale factor for the similarity variable. ln comparison
with the classical series and numerical solutions and other approximate methods which also
heavily rely on numerical computations, the above method does not require lengthy
calculations. Moreover, no linearization is required. A successful application of the first
approximate method has recently been done by Palekar and Sarmalsl to the case of a steady
boundary-layer flow with suction and blowing. Very recently Sattarlel rnodified the method
of Bianchini et al. by introducing a time-dependent length scale along with the scale
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function for the similarity variable considered by Bianchini et al. The first order differential
equation that Bianchini et al. obtained for the scale function was obtained by Sanar in a
much more simpler form which lead to a simple solution. ln this research work our aim is
to extend the work of Sattar by taking the potential flow to be a function of 'x' and 't'. Our
aim would thus be to attain a similarity solution by adopting a scale function for the
similarity variable to be a function of 'x' and '/' as proposed by Bianchini et al.
As in the work of Sattar along with the scale function we will also introduce a time-
dependent length scale which has the bearing with the boundary-layer thickness.

THE GOVERNING EQUATIONS AND THE METHOD OF SOLUTIONS

The basic two-dimensional equations governing the unsteady incompressible laminar
boundary layer flow past a flat plate are given by (Schlichting3)

t2

Al ev
' - 
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Al dl al lfu 22u

-+u-+v-=--'+v- -dt & O p& A,'

(t)
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with the boundary conditions

z=y=0for ),=0i 
(3)

u: Lt (x,/) as y + ccJ

where x and y are the Cartesian co-ordinates along the flow and normal to it respectively,
'l' is the time,u and v are the velocity components along.r andl'directions and U(x, l) is

the velocity of the potential flow far away from the boundary. p is the pressure, p is the
density of the fluid and v is the Kinematic coefficient of viscosiry.
The potential flow U(;r, l) is considered to be known, it determines the pressure distribution
within the flow as shown below.
We know that at the outer edge of the boundary layer the parallel component of velocity 'er'
becomes equal to that in the outer flow, U (x, t). Since there is no large velocity gradient
here the viscous term in the original Navier-Stokes equations vanish for large values of
Reynolds number, and consequently, U(x, r) satisfies the following Navier-Stokes equation
for a two-dimensional incompressible flow.

lop
0t 0x 0y p0x

where u' and v' are the parallel velocity components of a general non viscous flow.

Thus satisfoin g U(x, t) for the above equation (4), for the outer flow we obtain

du ,,au tdp
-TUdt dx pdx

Now using (5) in equation (2), the basic governing equations (l) and (2) and the boundary
conditions (3) turn out respectively to be

(4)

(5)
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therefore considered to be a characteristic length and h(X) is a scale function. As mentioned

in the introduction the length scale ahas a bearing with the boundary layer thickness which
can be ascertained later.

With the aid of the above similarity variable we now assume a dimensionless

velocity profile as

l3

aa4.11= Q (6)ad
a a a aI -.at du-' +u qy-:==+ U + v4 Q)dt&AdtAA'

tt=v=0 for y=g I'r(8)
u=U(x,t) as Y-+oJ

Since our main objective is to obtain a similarity solution based on a scale function, we

therefore, consider a similarity variable 7 as

,='' h(x')

where I =L,X=a *d o=a(t) is a length scale but
OC

(e)

a function of time. a is

u =U(x,t)f (q)
The continuity equation (6) now may be written as

u=-14dr.Jdr'
Introducing (9), (10) and (l l) in equation (7) we obtain

rtu *u,Lb( x dh -r)* r4*rtu=du *udu *r2'!." dt odt\hdX ) & A dt dx A"
We now integrate the above equation (12) across the boundary layer from zero to infinity
with respect to Jr, to obtain.

!' # * *\,r, :#(+# -,)* .!(" * *, #),,
=I#0,.!rffa,.i"#0, (r3)

which finally reduces to the following form

o' t du r", . +#(a, + za,) - i#? # - o)", * # *L 
o, = +vUdt ' vdX'' J' vdt\ dX /' 

(14)

(10)

(l l)

(12)
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wherea, = jtt- fldr;,ar=-!rta,

l.s,
(15)

The potential flow U(x, r) is now considered to be separable and can be written in the form

u (x,t) = v (t)r(x). (16)

Hence using (16) in (14) we obtain

o'ldlr, odoxdF odo(__an _\
;v dt 'o,-i * FEno,-; o, l^ dr, - 

o 
)o,

*!gv{o. *uo lh a.
v il( ' v &ot=:' 

(17)

where a, = A, *2ar.
In order to obtain a simple form of solutions of (17) one ca ty a class of solution by
setting' 

o, tgL =_odo (lg)
vYdtvdt

Therefore, o-l 
= - d? 

(19)Y6

which on integration yields

Y(t)= 14o-t
Let at t=te, V=Vo and eoq.
Then from (19) we have A=Vpos.
Hence the potential flow given by (16) can be put in the form

u(x,t)=v(t)r(x)= Lr(x)=Tr(x) = ?rrr, (20)

where o'- L 
.

oo
We now define Reynolds number R as

n =!1o..v
Hence using (19) and (20) in (17) we obtain

- Llgno, -o do LlLno. -o d, (, !L- \
v dr v dt F dx v dt \ d-r 

-o)o'

Boundary Layer Solution

o, =-!f {r- f)dtt and an =(g),=,
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*LlL no.+Rdh o.=ooFdX , dX ' h
(21)

(22)

(23)

(26)

(26a)

The two dimensional boundary layer equation (6) and (7) are now reduced to a single first
odo

order differential equation for the scale function h(n exc€pt for the term - * 
wbere

the time 't' appears explicitly. But since the notion of the present problem is to find a
odo

similarity solution, the similarity condition requires 
^^, ; A 

must be a constant.

odo
Therefore let =K (say)

we obtain

Using (22) the equation (21) reduces to

- Kha. - KLlLha. - x( x !!--n\o^ *L!!-na. + R,'^ dh 
=oo' Fdx \ dx )' Fdx " 'dx h

or, -Kh(ar - dz)+ (Ra, - KXa)#+ (Rar- KXa,rr+#=g! Q4)

An integration to the above equation thus gives the scale parameter h(X) and hence a

solution to the velocity profiles. The constant of integration arising out of this integration
will be determined by adding an initial condition to the set of boundary conditions adopted
in (8).

GENERAL SOLUTION

In order to have a general solution for the scale parameter h(X) of the equation (24), it is
now necessary to make an assumption of the function f (r) tor the velocity distibution
proposed in (10).

A convenient choice for f (r) is made to be

(2s)

vdt
Thus integratng(22),taking into consideration the condition that C = 0 at / = 0,

o= Jzxw

f (rD= erf (ry)

With this choice of f (rD the constants defined in (15) are then integrated out as

a,=|, a, =4, or=4 ^d aa =2.i4, .!r ^!r ^l;
Since A, = d z the equation (24) now takes the form

(Ro, - KXa;#. (Ro, - KXa;+# = +
The only boundary condition needed to solve this equation is

h(n:0 forx= 0
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Now from (22)

From equation (20) we can write

U(X)=U,F(X)
Therefore the general equation (26) reduces to the form

Ro,dh +Ra"h dF 
=dn'dx 'F dx h

Here the Reynolds number R = 
U o 

reduces to p = 
UL 

.

The above equation (29) thus A"r?riU", the basic ,"d"'n-",ioo equation
cases to be considered below.

l6 Mean and Maleque

The above equation plays the key role of the problem considered in this research. An
integration to this equation would thus give the scale parameter for different cases to be
considered and hence would lead to the solutions for the velocity profiles of the respective
cases. Three different steady cases, which are of practical imporlnce, will thus bi taten
into account.

SOLUTIONS FOR STEADY CASES

In the steady case the characteristic length o (t) and the potential flow u(x, r) are now
considered as

6 (t) = L and U(X, t) = U(X) where f, - r
L

odo od;;= |frtrt = o (27)

(28)

(2e)

for the steady
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FLOW PAST A FLAT PLATE AT ZERO INCIDENCE

In the case of a flat plate the outer potential flow is taken to be uniform and hence we have
F(X)=1.

Thus equation (29) takes the form

hdh = !' ax (30)
Rod,

where fto =%l-.
u

Integrating (30) and using ft(X) = 0 for X = 0 we obtain

h(x) =

Hence the similarity variable

ry=

Now from (10) and (32), the velocity distribution for the flow past a flat plate is obtained as

(31)

(32)Y - Y F* -"h Jx rl 2oo

.Y
where 4 = -:." 

^lx

t=*'{tW} (33)

The velocity profile obtained due to the above distribution is plotted in Figure L A
comparison of this result is also made with those of Blasius exact solution and the
experimental results of Hill and Stenningtr0l.

Now the shearing stress corresponding to the solution of (33) is obtained as

" 
= o(x),=, = #(#),=, = +(#)*,
_ pu, ( 2 

"-,,\ = 
24(J o

Lh\Jn ),=o LhJz
t2",( pUo\W-rl"r,-Iffi)\l ,t '

2a oX
Rod,
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n
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Figure l: Steady velocity profiles fa a flat ploe

Heuce the skin friction denoted by C, isobtainedas

r- to tQo W
T" - M - ,l 

"", ut,! ,rx

=ffi^;- l"^* R'= #*J
=E-^f =.360, n;i.

FLOW IN A COI\TVERGENT CIIANNEL

For a flow in a convergent channel the potential flow is taken to be

(l(x)=_?=_?(+), il,,o
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with a, > 0, U (x) represents two-dimensional motion in a convergent channel with flat
walls.

Inthiscase R=UL =-', .UDX
Now corresponding to the distribution (20) we h I

ave P()() = -;.
Therefore, the equation (29) for this case reduces to

. dh h2 a.DX
h--fl _=_j_

dX " X ilrdt

where a,u =o' .

d3

To findasolutionof (34), let z = h2 ,
so that the equation (34) takes the form

dz A_ z _ 2aruX') n _
il( " X ttdt

A solution of (35) is obtained as

z=h'- '"0 Xt
u ra ,(a, - l)

)"

(34)

(3s)

(36)

(37)

The velocity distribution for this case is obtained as

The velocity profile.thus obtained fron (37) is plotted in Figure 2 alongwith exact solution
due to Pohlhausentttl.
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Figure 2: Velocity profiles for the flow in a convergent channel

FLOW PAST A WEDGE

For the fio* past a wedge the potential flow is taken to be

U (X) = tttx'
u,(U)^

= utf X' (since X =!) (38).L
Where z1 is a constant and the component m is chosen with respect to the similarity
condition ofFalkner and Skan equation.

n UL utl'*r X ^ThenR=3=
DU

Thus comparing (38) with (16) we obtain {

F(X\=X^'
Therefore the equation (29) reduces to

dh ma. ht do
(3e)

dX q3 X a3utl^*tX^
As before let z = h' , h"n""(39) takes the form

dz z 2anu* + dt7=
dX -7 X djutl^*tX'

20
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wherc g, =2*o,
d3

A solution for h(X) in the present case is thus obtained as

Mean and Maleque

.Eb 
- 

l- t

\arurl"t(a, +l-m)
l-t

2

Thus the velocity distribution for this case is obtained as

plotted againsl

4 respectively.

I7- n-l
where r7, = ,l?r=

Following the distibution for the flow past a wedge the velocity profiles

n, = t 1pr? *, two varues * , (= i and

prtrtrt Mctb(xl 
-Errt mhrtion

rlrrr 1o llortre

(41)

')

l.il) nuu" u"*
\u)
in Figures 3 and

r.fit

u

v

o.oo L
0.00I 1.00 2.00 tx 4.00 5.00 6.00

Figure 3: Velocity profiles for the flow past a wedge in case of m=l/3
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ry

U

Prmot Methnd
Oxml mlrrlim
rltre kr Hdtr@

0.00 L
0.00 4.00

Figure 4: Velocity profiles for the flow past a wedge in case of m=l

DISCUSSIONS

Based on the unsteady boundary layer equations, as special cases, steady solutions for
different flows are obtained. The first case considered is the steady flow past a flat plate at
zero incidence, The result obtained in this case are presented in Figure I and compared
with the result of Blasius exact solution and the experimental results of Hill and Stenning.
It shows a good comparison indicating the validity of the procedure adopted in the present

study. The viscous drag co-efficient which we have obtained in this case in the form of

skin-friction co-efficient agrees quantitatively very well with the value .33206 Rj
obtained by Howarthtt2l. In the case of a convergent channel the result obtained by the
present method is compared with exact solution due to Pohlhausen in Figure 2. It appears

from Figure 2 that close to the boundary, present solution shows a perfect matching with
the result of Pohlhausen. Our result overshoots the solution of Pohlhausen in the region far
away from the wall. The reason for overshooting may be due to the fact that the integral
method adopted in this work is based on a particular type of function, the error function. As
for the case of flow past a wedge in order to compare our results with the results of
Hartreetlsl in Figs. 3 and 4, a qualitative comparison is made for two non-negative values of

*( = L una 1) . rn"r" values are chosen arbihary from the values considered by
[3 )

Hartree. Quantitatively our results show good matching with those of Harhee. It has thus
been demonstrated by way of comparisons of our results with exact and experimental
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results that integral solution procedure adopted here is advantageous over the time
consuming classical and numerical methods, as for as the simplicity is concerned.

NOMENCLATURE

X, Y Coordinates along the plate and normal to it
u, v Velocity components
t Time
U Potential velocity
p Density
p Coefficient of viscosity/\
,l = F I rcnematic coeflicient of viscosity

I p)
o (t) Length scale/\
XI = L I Oimensionless length along x-axis

\ o)

Y( = L\ Dimensionless length along y-axis
\ o)
.( r \hl='I Scalefactor\ x)
f Function of 11

F Function of X
V Functionof t
L Characteristic length (constant)

6 boundary layerthickness
R Reynolds number
f" Skin-friction coefficient
db c"z, o4 & d.a Constants.
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