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INTRODUCTION

A complete calculation of the boundary layer for a given body with the aid of the Prandtl’s
boundary layer equations is, in many cases, so cumbersome and time-consuming that it can
only be carried out with the aid of computer. It is, therefore, desirable to pose at least
approximate methods of solutions, to be applied in cases when an exact solution of the
boundary layer equations can not be obtained with a reasonable amount of work, even if
their accuracy is only limited. Von Karman® was the first to devise an approximate
method and considered a steady flow taking the potential flow simply as a function of
longitudinal distance x. The details of this integral method are found in Schlichting®!.

On the otherhand a number of important fluid-dynamic phenomena are governed by
boundary-layer unsteadiness. Two of these phenomena can be cited as stall flutter and
rotating stall. Because of the presence of an unsteady pressure field the behaviour of the
boundary-layer are still not well understood, though some solutions are available for
special cases**®.. In view of the importance of the unsteady boundary-layer flows,
Bianchini et al. introduced a more simpler approximate method, with the help of the
powerful error function, to calculate the characteristics of the unsteady boundary-layer
flows, taking the potential flow simply as a function of time. Later this approximate
method was further developed by Socio and Pozzi!”! with a rigorous mathematical approach
taking the potential flow to be a function of ‘x’ and ‘¢’.

The essence of the first approximate method developed by Bianchini et al. and Socio and
Pozzi is to assume a similarity solution even in those situations where similarity solutions
do not exist, and to find a suitable scale factor for the similarity variable. In comparison
with the classical series and numerical solutions and other approximate methods which also
heavily rely on numerical computations, the above method does not require lengthy
calculations. Moreover, no linearization is required. A successful application of the first
approximate method has recently been done by Palekar and Sarma'® to the case of a steady
boundary-layer flow with suction and blowing. Very recently Sattar”! modified the method
of Bianchini et al. by introducing a time-dependent length scale along with the scale
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function for the similarity variable considered by Bianchini et al. The first order differential
equation that Bianchini et al. obtained for the scale function was obtained by Sattar in a
much more simpler form which lead to a simple solution. In this research work our aim is
to extend the work of Sattar by taking the potential flow to be a function of ‘x> and.‘#’. Our
aim would thus be to attain a similarity solution by adopting a scale function for the
similarity variable to be a function of ‘x” and ‘#’ as proposed by Bianchini et al.

As in the work of Sattar along with the scale function we will also introduce a time-
dependent length scale which has the bearing with the boundary-layer thickness.

THE GOVERNING EQUATIONS AND THE METHOD OF SOLUTIONS

The basic two-dimensional equations governing the unsteady incompressible laminar
boundary layer flow past a flat plate are given by (Schlichting”)

Z2+Z=0 1
4% 0

L . Y

—pg =y — T 2)
ot & 12 p ok &
with the boundary conditions
N=v=4 1" v=1 :
u=U(x,t) as y—)oo} &

where x and y are the Cartesian co-ordinates along the flow and normal to it respectively,
‘t’ is the time, u and v are the velocity components along x and y directions and U(x, f) is
the velocity of the potential flow far away from the boundary, p is the pressure, p is the
density of the fluid and v is the Kinematic coefficient of viscosity.

The potential flow U(x, f) is considered to be known, it determines the pressure distribution
within the flow as shown below.

We know that at the outer edge of the boundary layer the parallel component of velocity ‘u’
becomes equal to that in the outer flow, U (x, ). Since there is no large velocity gradient
here the viscous term in the original Navier-Stokes equations vanish for large values of
Reynolds number, and consequently, U(x, ¢) satisfies the following Navier-Stokes equation
for a two-dimensional incompressible flow.

U W 2 TU 1 dp
— U — 4V — =L
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where ' and V' are the parallel velocity components of a general non viscous flow.
Thus satisfying U(x, ) for the above equation (4), for the outer flow we obtain
ou au 10
U—=- ol 5)

el = '

ot Ox p Ox
Now using (5) in equation (2), the basic governing equatlons (1) and (2) and the boundary
conditions (3) turn out respectively to be
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u=U(x,t) as y—>»
Since our main objective is to obtain a similarity solution based on a scale function, we
therefore, consider a similarity variable 7 as
i

D il 9
7 % ®

X
where Y = l, X =— and o= 0(?) is a length scale but a function of time. o is
o o

therefore considered to be a characteristic length and 4(X) is a scale function. As mentioned
in the introduction the length scale ohas a bearing with the boundary layer thickness which
can be ascertained later.

With the aid of the above similarity variable we now assume a dimensionless
velocity profile as

u=U(x,1)f(7) (10)
The continuity equation (6) now may be written as
v=-| 2 . (11)
&

Introducing (9), (10) and (11) in equation (7) we obtain
2
f_aj[_]_.}.Uf’.Z.d_a(iY._‘_i.h__l)..{.uﬁ_i.vi:d_u.'.l]ﬂ.’. Vﬁ' (12)
ot o dt \ h dX »*?

We now integrate the above equation (12) across the boundary layer from zero to infinity
with respect to y, to obtain.

= du . nda(X dh ) “’( éu du)
_d + \Uf e ] d + SEl [ .___d
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= |—dy+|U—dy+ d (13)
;!dt iy IV@;Z 4
which finally reduces to the following form
2
a-__l-ﬂhal +.].1£d_U(a‘ +2a3 _zd—o-.(X.di_h)az +ﬂd_ha3 —ﬂ
v U dt v dX v dt dX v dX h
(14)
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wherea, = I(l = Pdoo, = J-rzfilrj
0 0 (15)
a,= [£0-)dy and a, = (1]
0 0’),7 7=0
(15)

The potential flow U(x, ) is now considered to be separable and can be written in the form
U(x,t)=V(t)F(X). (16)
Hence using (16) in (14) we obtain

2
%o il g1 GRPREHE _ziz(xﬂ_ ,,)az
vV dt v dt FdX v dt

ax
+ﬁfyd_Fa5 +£d_ha3 S @
v dX v dX h

where @ = @, + 2a,.
In order to obtain a simple form of solutions of (17) one can try a class of solution by
~ setting,

o alitniv o g (18)
v V dt v dt
Therefore, 4% oy (19)
Vv o
which on integration yields
V()= A0

Letat t=t,, V=V, and o=0,.
Then from (19) we have A=V,0, .
Hence the potential flow given by (16) can be put in the form

U(x,t)=V(t)F(X):%F(X)=VL:-°—F(X)=K°,—F(X) 20)
: o
whigpg' ! 57
O

We now define Reynolds number R as

Wil
1%
Hence using (19) and (20) in (17) we obtain
g-do ocdo X dF ocdo dh
-— - ey ~——— | X —_} g,
v di v dt EidX v dt dx
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R @1
F dax ax h

The two dimensional boundary layer equation (6) and (7) are now reduced to a single first
odo

order differential equation for the scale function A(X) except for the term —7 where
Vv at

the time ‘t’ appears explicitly. But since the notion of the present problem is to find a

= = ; ocdo
similarity solution, the similarity condition requires that ——— must be a constant.

v dt
ocdo
Therefore let ———=K (say) (22)
v dt
Thus integrating (22), taking into consideration the condition that =0 at 1 =0,
we obtain G=L 2KVt (23)
Using (22) the equation (21) reduces to
R K(X L2 hjaz Sl T o O s Sty
Fdx ax F dXx X h
dh 1 g
or, —Kh(a, - +(Ra,-KXa,)—+ (Ra, - KXa )h——=—L (24
(@, -a,)+ (Ra, aZ)dX (Ra a,) F dxX n

An integration to the above equation thus gives the scale parameter h(X) and hence a
solution to the velocity profiles. The constant of integration arising out of this integration
will be determined by adding an initial condition to the set of boundary conditions adopted
in (8).

GENERAL SOLUTION

In order to have a general solution for the scale parameter h(X) of the equation (24), it is
now necessary to make an assumption of the function f(77) for the velocity distribution
proposed in (10).

A convenient choice for f(77) is made to be

S () =erf(m) (25)

With this choice of f(77) the constants defined in (15) are then integrated out as

Y N TR AP PR T

R~ ¥ X

Since @, = &, the equation (24) now takes the form

(Ra3—KXa2)ﬂ+(Ra,—KXa, A (26)
dXx FdXx h
The only boundary condition needed to solve this equation is
h(X)=0forX=0 (26a)
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The above equation plays the key role of the problem considered in this research. An
integration to this equation would thus give the scale parameter for different cases to be
considered and hence would lead to the solutions for the velocity profiles of the respective
cases. Three different steady cases, which are of practical importance, will thus be taken

into account.

SOLUTIONS FOR STEADY CASES

In the steady case the characteristic length o (r) and the potential flow U(X, ¢) are now

considered as

o () =L and U(X, 1) = U(X) where X =

Now from (22)
ore ‘od
——=="(L)=0
v dt v dt

From equation (20) we can write

U(X)=U,F(X)

Therefore the general equation (26) reduces to the form

dh h dF «
Roa,—+Ra, —— =%
eneyo o K S 7
Here the Reynolds number R = Ez reducesto R = U—L
17 v

=5

L
@7)
(28)
(29)

. The above equation (29) thus describes the basic scale function equation for the steady

cases to be considered below.
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FLOW PAST A FLAT PLATE AT ZERO INCIDENCE

In the case of a flat plate the outer potential flow is taken to be uniform and hence we have

i X =l
Thus equation (29) takes the form
hdh = dX (30)
Roas
where R, = U"L_
15
Integrating (30) and using h(X ) =0 for X =0 we obtain
= | 31
Rya,
Hence the similarity variable
,,=%=__\/ﬂs__ Ra’s (32)

Now from (10) and (32), the velocity distribution for the flow past a flat plate is obtained as

B Eniper i L T 33)
Uy 2a, ’
The velocity profile obtained due to the above distribution is plotted in Figure 1. A

comparison of this result is also made with those of Blasius exact solution and the
experimental results of Hill and Stenning!®.

Now the shearing stress corresponding to the solution of (33) is obtained as

,,[2_) ﬁ[a_] ﬂ[éf_)
o)y RO o L \On ‘5

,qu( 2 e_,,z) ~30U,
=0
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-
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Figure 1: Steady velocity profiles for a flat plate

Hence the skin friction denoted by C . is obtained as

1 U L
_cf 2
,oU na, LU
\/ \/LU X \/m \/U X
v

S Lk
= =% K . [where R, = :|
e, U,X
V2 - Lxte =.363019 R 2.
V4

FLOW IN A CONVERGENT CHANNEL

For a flow in a convergent channel the potential flow is taken to be

U(x)=——;—=——(—), u, >0
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with %, > 0, U (x) represents two-dimensional motion in a convergent channel with flat
walls.
In this case R = £ i el

v uXe

Now corresponding to the distribution (20) we have F (X)=- _1_
X

Therefore, the equation (29) for this case reduces to

dh h? o 0X
e TN R T (34)
dx X ¥,
where a = fl-i
a3
To find a solution of (34), let z = h : £
so that the equation (34) takes the form
O S 35)
dXx X ua,
A solution of (35) is obtained as
g2 him et X (36)

ula3(a6 = 1)

Therefore, = et et X
ua,(a, -1

md oY Y [u [@:(@ =D
n=—= 3
h xVo a,

The velocity distribution for this case is obtained as

F=f)=ef ()= emf{f‘[‘;—v‘ B ] S D} a7

The velocity profile thus obtained from (37) is plotted in Figure 2 along with exact solution
due to Pohlhausen!""),
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Figure 2: Velocity profiles for the flow in a convergent channel

FLOW PAST A WEDGE
For the flow past a wedge the potential flow is taken to be
U(X)=ux"
= u,(LX )"
; X
=W X"™ - (since X =I) (38)

Where u; is a constant and the component m is chosen with respect to the similarity
condition of Falkner and Skan equation.

U bociianl? S
v v '
Thus comparing (38) with (16) we obtain
() ="k .
Therefore the equation (29) reduces to
dh ma, h’ ot
haor 2 e 69)
dx g, 1 agul X"
As before let z = h*, hence (39) takes the form
dz z 2,0

e (40)
dx X LT

Then R =
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2m
where o= il ]

a,

A solution for 2(X') in the present case is thus obtained as
1-m
ik 2a4U X T
a,u L™ (a, +1-m)

Y ,u a,(l-m+a,) =
Therefore ;) = —_ = Y=t s 7)x ¥
h v e,

Thus the velocity distribution for this case is obtained as

'5=f(77) =e1f(77)=e;f{y\/z‘/as(l—m+a,)xﬂz‘—'}
v 2a;

=e#(ﬂ,Ja’(l;:+“’)] @1

u

m~1
1 2

where 77, = Ya|—x
| 4

Following the distribution for the flow past a wedge the velocity profiles ( i) have been
U

m-1
plotted against 7 = y /u_,x—z—- for two values of m(: 1 and 1) in Figures 3 and
v 3

4 respectively.
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Figure 3: Velocity profiles for the flow past a wedge in case of m=1/3
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Figure 4: Velocity profiles for the flow past a wedge in case of m=1

DISCUSSIONS

Based on the unsteady boundary layer equations, as special cases, steady solutions for
different flows are obtained. The first case considered is the steady flow past a flat plate at
zero incidence. The result obtained in this case are presented in Figure 1 and compared
with the result of Blasius exact solution and the experimental results of Hill and Stenning.
It shows a good comparison indicating the validity of the procedure adopted in the present
study. The viscous drag co-efficient which we have obtained in this case in the form of
1
skin-friction co-efficient agrees quantitatively very well with the value .33206 R Xz

obtained by Howarth!'?!. In the case of a convergent channel the result obtained by the
present method is compared with exact solution due to Pohlhausen in Figure 2. It appears
from Figure 2 that close to the boundary, present solution shows a perfect matching with
the result of Pohlhausen. Our result overshoots the solution of Pohlhausen in the region far
away from the wall. The reason for overshooting may be due to the fact that the integral
method adopted in this work is based on a particular type of function, the error function. As
for the case of flow past a wedge in order to compare our results with the results of
Hartree!" in Figs. 3 and 4, a qualitative comparison is made for two non-negative values of

m(= .1. and 1). These values are chosen arbitrary from the values considered by

Hartree. Quantitatively our results show good matching with those of Hartree. It has thus
been demonstrated by way of comparisons of our results with exact and experimental
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results that integral solution procedure adopted here is advantageous over the time
consuming classical and numerical methods, as for as the simplicity is concerned.

NOMENCLATURE

XY Coordinates along the plate and normal to it
u, v Velocity components

t Time

U Potential velocity

p Density

u Coefficient of viscosity

Kinematic coefficient of viscosity

=

I
ol b=
S ST £

G (t) Length scale

Dimensionless length along x-axis

’: i
Il
ww

p VORI 4

Dimensionless length along y-axis

Scale factor

=
Il

fi Function of 1

F Function of X

A" Function of t

L Characteristic length (constant)

) boundary layer thickness

R Reynolds number

£ Skin-friction coefficient

ay, O, 03 & 0y Constants.
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