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Abstract: To take full advantage of computational fluid
dynamics (CFD) in the design of internal flow
components such as the duct and turbomachinery blade
rows, it is necessary to develop numerical methods that
offer both accurate solutions for realistic flows and
minimum turn-around time and computer cost. While a
Navier-Stokes solver is really required for the above
purpose, the problem of turbulence modeling and the large
amount of CPU time make a fast and robust 2-D Euler
code (with its simplicity in the method) still a desirable
tool for routine applications. Results obtained from this
prediction are particularly useful in preliminary design
work where information on pressure alone is desired
and for problems where the viscous / inviscid
interaction is weak. An investigation on the numerical
technique for Euler equations has been made and applied
to internal flow problems on a VAX-9000 computer.
Comparisons of various duct flows simulation were then
performed between numerical calculations and well-
documented experimental data. Their a%-eements are very
encouraging. IEreliminary results of both turbine and
compressor flow computations were also conducted to
illustrate the capability and limitations of these inviscid
Eredictions. The time-marching strategy developed is

ased on Denton's finite volume algorithm. Time steps
are not severely restricted when grid points are closely
distributed. An outline of the scheme is addressed and the
current applications of the solver are assessed.

Keywords : Inviscid, Isoenergetic Compressible
Flows.

INTRODUCTION

Time marching approaches for predicting internal flows have been developed for
more than 34 years [1 and 2]. The main advantages of these schemes are their
ability to calculate mixed supersonic and subsonic flows with automatic shock
capturing beside their great simplicity and the physical understanding resulted
from the solution procedure. The 2D and 3D Euler equations, though no viscous
effects, are still widely applied in fluid machinery design and are almost
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always solved by an explicit procedure. Methods for solving these equations are
now highly developed with several different numerical algorithms being
available. Implicit predictions have not proved more efficient than explicit ones
for this application, particularly when the latter uses multigrid (though not
implemented here) to accelerate the convergence.

The numerical procedure developed here is based on the time-marching method
developed by Denton [3]. The basic principle involved is to begin with a guessed
flow distribution and integrate the time dependent equations of motion and
energy forward with time until a steady state solution is achieved. This finite
volume integral method is claimed to be more stable than the differential
approaches [2] as all fluxes are conserved and changes of momentum equate to the
forces imposed by the boundaries once the steady state is reached.

The aim of the work is to demonstrate the capability of an Euler code to compute
the entire flowfield. In the following sections, a brief outline will be given of the
Euler solution procedure and then the solutions computed will be discussed and
presented. Comparisons of the calculated results with an existing inviscid flow
prediction and experimental data showed good agreement with differences being
consistent with the existence of viscous effects.

MATHEMATICAL FORMULATION

Governing Equations

The 2-D Euler equations with Cartesian coordinate system in the differential
form can be written as [3]:

— ap 0 0
Continuity — (pV,) + o (pV,) 6))
a(pVy) 2] 2 0
X-momentum i —pati = —(prpVi)+ = (PVVy) 2
apVy) d 3 2
Y-momentum ; at-"' = —(pVyVy)+ * (p+pV32) 3)
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By applying these equations for conservation of mass, momentum and energy to a
series of control volumes with adjacent volumes sharing a common face and for a
time step At and element of unit length with control volume AV, the Euler
equations (1) - (4) become:

Continuity AV e Ap = At e Sy (pVy ¢ dSy +pV,, dSy) )
X-momentum AV« A(pVy) = At @ Sp[(p +pVi) dSy +pVyVyedSy)] ()

Y-momentum AV e A(pVy) =Ate Zn[pVxVy o dSy +(p+ pVﬁ) o dSy] @)
Energy AV e AE = At ¢ 3, (HpV . 0 dS, + HpVy o dSy) 8)

The summations are made over the 4 faces of an element and dSx, dSy are the
projections of the face in the x and y directions. That is, we are solving the
equations (5) - (8) in integral form by applying the equations for conservation of
mass, momentum and energy to a series of control volume with adjacent volumes
sharing a common face. In this way once the steady state is reached the net flux
into each elemental volume is zero so that overall mass and energy flows are
conserved and changes of momentum equate to the forces imposed by the
boundaries. The equations must be closed by an equation of state for the fluid
which for a perfect gas would be P = pRT. Since there is no heat flow and the
viscous work terms in an inviscid fluid, provided that the flow is steady relative
to the component being calculated and Prandtl number near unity, the energy
equation reduces simply to the conservation of stagnation enthalpy (or rothalpy
for rotor blades) along a streamline which is a well known steady flow energy
equation from basic Thermodynamics. This assumption implies that energy is
diffused by gradients of stagnation temperature rather than of static
temperature such that the stagnation temperature is constant through an
adiabatic boundary layer. This is known to be a good approximation for internal
flow calculations except hypersonic flows. It is also much more efficient
computationally as no exponentiation is needed in obtaining the pressure from
the density via

T=(H-05*V?)/C, and P=rRT )
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Numerical Solution Technique

A simple H-mesh is used due to its simplicity and flexibility. The time-
marching method is applied to the H-grid consisting of quadrilateral elements
which do not overlap and have nodes only at their corners which reduces finite
differencing errors and allow complete freedom to vary the size of the elements.
Both these factors help to improve entropy conservation. In the turbomachinery
calculation, the quasi-streamlines upstream and downstream of the cascade are
chosen to be roughly in line with the flow inlet and exit directions but these lines
do not control the flow direction. Periodicity is applied over the bounding quasi-
streamlines so that the boundaries exert zero force on the flow and do not control
its direction. The outlet flow direction is predicted as part of the calculation
being determined by the periodicity condition behind the trailing edge. The
fluxes through the quasi-streamlines are usually small compared to those
through the pitchwise lines and are obtained directly from the fluid properties
at the calculating points on the streamwise faces of the elements.

The equations are solved in the order: mass-pressure-momentum. The procedure
adopted is to update the density at all grid points then use the new density in
conjunction with the old velocities to get the pressure at each grid point (Eq. (9)).
Finally, the new pressures together with the old densities and velocities are
applied to update the x-momentum and y-momentum. The order in which the
momentum equations are solved is not important (i.e. an explicit scheme where
the new variables are not used in the time step in which they are calculated
with the exception that the new pressure is used immediately it is available). A
stability analysis has been developed for the scheme by Denton [4] where the
maximum permissible time step is Atmax = Axmin[(\M2+16) - M] / 4c.

To ensure stability, upwind differencing is adopted in the streamwise direction
for fluxes of mass and momentum whilst downwind differencing is used for
pressure. Central differencing is used for all quantities in the pitchwise
direction. In the steady state, errors induced by upwind and downwind
differencing are completely removed by the use of flux correction factors that
correct the initial upwind and downwind flux estimates to accurate values based
on any desired interpolation procedure. In other words, the basic philosophy of
the marching scheme is to take a very simple and fast first-order scheme and
progressively add on a second- or higher-order correction as the calculation
converges. Details of this "Opposed Difference Technique” has been described in
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[3] and has the useful property that its stability depends only on the axial Mach
number, not on the absolute Mach numbet as is more usual.

The computer calculations for the complete program are very fast as virtually all
operations are arithmetic. Time requirements are about 1.2x10°5 seconds per point
per time step on VAX-9000. The number of time steps needed for convergence is
depended by the number of grid points in the axial direction since the CFL
condition requires that pressure waves cannot propagate more than one grid
spacing per time step for an explicit method. For example, convergence to the
steady state is achieved in 300-800 time steps for a (98x45) grid.

Boundary Conditions

With subsonic inflow the total temperature, total pressure and flow direction
need be fixed at the upstream boundary whilst only the static pressure must be
specified at the downstream boundary. With supersonic relative inflow, it is not
usually possible to fix the flow direction and a condition of specified tangential
velocity at inlet may be used instead. This permits the inlet flow direction to
change as the calculation proceeds. The resulting solution will then satisfy the
unique incidence condition to the blade row for cascade flow calculation. If the
axial Mach number is greater than unity all flow conditions must be fixed at the
upstream boundary because pressure waves can no longer reach it to change the
inflow conditions. The static pressure at the upstream boundary must be obtained
either by extrapolation from the interior flow field or by use of characteristics
type relationships applied to upstream traveling pressure waves.

In brief, the boundary conditions applied at the downstream boundary are a
specified uniform static pressure on the last pitchwise line and a condition of zero
velocity gradient along the quasi-streamlines. At the upstream boundary the
stagnation pressure and temperature and flow direction are specified and there is
assumed to be no pressure gradient along the quasi-streamlines. The static
pressure on the first pitchwise line is taken to be the same as that predicted on
the same quasi-streamline at the second pitchwise line. This static pressure is
used in conjunction with an assumption of isentropic flow from the stagnation
conditions to calculate the velocity and density. The inlet flow is, thus, not
necessarily uniform.
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For the turbomachinery prediction, the periodicity condition on the "free"
boundaries upstream and downstream of the blades is easily satisfied by
considering points outside the calculation domain to have the same flow
properties as points one pitch distant within the domain and then equating all
flow properties at corresponding points on the boundaries.

COMPARISON OF FLOW PREDICTIONS TO SOME
REPRESENTATIVE TEST CASES

Six test examples are included. We compare the calculation (for test cases 1,2, 3
and 5) with others' data by keeping the flow Reynolds numbers of the
computation equal to the analytical/experimental ones. The matching of flow
condition is done through the proper scaling of flow geometry and only a
qualitative (not quantitative) comparison is made here for test cases 2, 3 and 4.

The Circular-Arc S-Shaped Duct [5]

A simple but interesting test case is the non-diffusing (optimum), subsonic flow
through a circular-arc S-shaped duct (59x7 H-mesh) in which each of the two
arcs had equal centerline radii of curvature. The duct's two turns were completed
in 450 and, thus it had an offset-to-length ratio, d/L, of approximately 0.414.

Length ;JI
TTIT T
(59x7 ) H-Mesh TP Gep
Circular-Arc-Duct e
Inflection
Second Tumn
Top

—
‘——i

5 First Tum

Figure 1: Experimental Duct and Geometry Definitions.
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The center-line radius of curvature was 508 mm for each of the turns and the gap*
was 101.6 mm as illustrated in Figure 1. The flow Reynolds numbers is 6.56x104
based on the inlet condition and duct hydraulic diameter.

The predicted wall surfaces Cp's along the top and bottom walls of the duct and
pressure, Mach number contours with streamlines velocity vector plots are
depicted in Figure 2. Good agreement is achieved over most of the duct profile
except near the rear part of the duct. Inreal flow, the major impact of viscous

TRTITHIIE

Figure 2: Predicted Flow Field Distributions for 45%- 450 Circular-Arc-Duct.

*

Offset is defined as the cross-stream distance from inlet to exit centerlines whilst gap is
defined as the constant radial spacing between the curved duct walls. The optimum duct
implied that duct which was least prone to separation. Note that Truckenbrodt’s boundary layer
integral method (1973) was used in conjunction with a numerical potential flow program in
reference [5].
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effects arises from the boundary layer blockage and if this can be modelled by
coupling the Euler calculation with a separate boundary layer solution on the
wall surfaces then improved results may be achieved [6]. However, many
aircraft use bending rectangular and circular duct geometries in the inlet and
exhaust of the propulsion systems. The performance of these types of ducts,
which may have strong secondary flows and can have an adverse effect on the
pressure distribution (i.e., cause high total pressure distortion) and on pressure
recovery at the engine face, should be determined by full 3-D Navier-Stokes
solver [7 and 8].

A Kidney-Shaped Channel Flow [9]

In the second application, a kidney-shaped 2-D channel is used as the test
configuration, which exhibits greater degrees of geometrical complexities. The
dump regions downstream of the inlet produce substantial flow recirculations;
these recirculating eddies can strongly affect the curvatures of the main incoming
flow. The case selected here is for an inlet Reynolds number of 6.2x103, and a
uniform incoming velocity profile, and constant fluid properties. '

A (36x15) H-mesh is used for the present Euler predictions and the calculated
Mach number, static pressure and velocity vector distributions are shown in
Figure 3. A viscous computations are also included, obtained using a pressure-
based multigrid algorithm [9] which solves the steady-state Navier-Stokes
equations.

Straight Channel Flow with Circular Bump [9]

The third example is a straight channel with circular bump mounted in the
middle of the lower wall. The height-to-length ratio of the channel is 1 to 3, and
the height of the bump is 15% of the inlet height. Figure 4 illustrates the flow
prediction and the mesh employed on the circular bump with an inlet Reynolds
number of 103.

Cylindrical and Elliptical Cascade

The next test case is the subsonic flow over a cascade of cylinders (65x51 H-cells)
or ellipses (92x51 H-meshes). The blunt leading edge creates a very highly
distorted mesh where numerical errors are expected to be large. These will then
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be shown up by a lack of symmetry of the predicted flow because entropy
generated at the leading edge will tend to produce a recirculating flow near the
rear of the cylinder/ellipse. A promising scheme should preserve the symmetry
(for low Reynolds number flow) and should capture a near stagnation point at the
downstream end of the cylinder/ellipse. Note that this is only true for subsonic
flow as if shock waves occur they will destroy the symmetry and recirculation
might exist as a result of the shock loss. Figure 5 illustrates the flow prediction
on the cascades of cylinders and ellipses with a peak Mach number of 0.76 and 0.7
respectively.
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Figure 5: Computed Flow Around the Cascades of Cylinders and Ellipses.
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Compressor Cascade C4-Blade [10]

The cascade to be tested consists a standard C4 section, each of chord 152mm,
pitch 152mm and span 456mm. The camber line is a circular arc with 40° of camber
(deflection) and the stagger angle is 15° when measured from a line which is
normal to the cascade. This is a high camber, low stagger configuration and thus
it is more suitable for low Mach number application.

A (98x45) H-mesh is used for the current Euler predictions and the calculated
Mach number distributions are shown in Figure 6. The flow Reynolds numbers is
2.17x10° based on axial chord and isentropic exit condition.

0.574545
0.544
0.513455
0.48291
0.452366
0.421821
0.391276
0.360731
0.330188
0.299641
0.269096
0.238551
0.208007
0.177462
0.146917
0.116372-
0.085827
0.055282

N®e©e>O000mMMEO I

5 e
0 6
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Figure 6 : Computational Mesh and Mach Number Distributions for C4
Compressor Blade.

Figure 7 compares the experimental and predicted blade Cp's. Other inviscid
computations are also included, obtained using a finite element programme
(Whitehead, 1982 [10]) which solves the potential flow equations. Near the
leading edge of the suction side and toward the trailing edge (particularly on
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pressure side), it may be seen that the inviscid values of Cp are higher than the
measured value [10]. This is due to the absence of any viscous blockage effects in
the inviscid calculation. The absence of blockage produces a larger effective flow
area and higher average Cp values. However, these effects are not so noticeable
on the leading edge of the pressure side as the initial curvature of the profile is
comparatively small.

(P [ oA I A Biade Gp ve XIOxX Piek g

Po1 = Ps1

0.28 .' 0.50 0.75
Fraction of Axial Chord [X/Cx]

Figure 7: Static Pressure Coefficients (Cp) for C4 Compressor Blade.

After the separation, the inviscidly predicted Cp is greater than the measured
Cp as expected. This is because in the separation region, the surface static
pressure remains more or less constant as there is virtually no motion inside the
bubble and the boundary layer is growing substantially. In fact, a separation
bubble is often identified by the constant static pressure region. Overall, the
predicted results compared favourably with the experimentally measured data.

The V.K.I. Transonic Nozzle Guide Vane LS-89 [11]

The last test example is the blade profile similar to the one of VKI's highly
loaded transonic linear turbine guide vane cascade LS-89 and the major
specifications are given in [11].

Two operating modes were calculated for isentropic exit Mach numbers of 0.85 and

1.02 (125x49 H-cells) and then compared with both the measured Misent. and the
inviscid solutions obtained by Holmes using a 2-D adaptive unstructured grid
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Euler solver [11] as presented in Figures 8 and 9 respectively. Again, good
agreement is achieved over most of the blade profile except near the rear part of
the blade. The accuracy of inviscid computations on a cascade depend largely on
-- high turning with a blunt trailing edge -- hangs entirely on the treatment of
the trailing edge. We have chosen here to set a stagnation point at the node
closest to the point where the blade mean line pierces the trailing edge circle.
Within the realm of a purely Euler prediction, this is a very clean approach to
the problem of blunt trailing edges, but it may not give the most realistic
approximation to the true viscous solution. The strong accelerations and
decelerations at the trailing edge are due to the fact that these are Euler
calculations with the flow remaining attached at the blunt trailing edge. Note
that a Navier-Stokes solution would show a flow separation at the trailing edge
and the spikes would not be seen [8].

In summary, the limitation of Euler solutions when applied to difficult test cases
is discussed previously.

CONCLUSIONS

B The validity of the assumption of inviscid flow obviously depends on the
type of flow to which it is being applied. For compressor blades, the
boundary layer blockage is much larger than turbine and inviscid
predictions can be seriously in error, especially for blades with strong
shock waves. However, for most turbine blades, the boundary layers are
so thin (typically displacement thickness about 1% of throat width) that
Euler computations give a very good estimate of the blade loading. In both
cases the major impact of viscous effects arises from the boundary layer
blockage and if this can be modeled by coupling the Euler calculation with
a separate boundary layer solution on the blade surfaces then improved
results may be achieved even for compressors.

2, The accuracy of the present method is largely determined by the accuracy
of the finite differencing employed on the solid surfaces (i.e. for the
implementation of boundary condition). In the cascade flows, the rates of
change of fluid properties are largest around the leading edge of a blade
therefore, in order to minimize differencing errors, a much finer mesh is
desirable in this region. Also, some reduction of pitchwise grid spacing is
beneficial near to all solid boundaries so as to reduce the errors due to one
sided differencing.
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Figure 8 : Comparison of Mach Number Distribution with Isentropic Exit Mach
Number of 0.85 for Turbine Nozzle Guide Vane.
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Figure 9 : Comparison of Mach Number Distribution with Isentropic Exit Mach
Number of 1.02for Turbine Nozzle Guide Vane.

Journal of Mechanical Engineering Research and Developments,Vol.18, 1995



Invisicid Isoenergetic Compressible Flows 16 E.Y-K.NG

3.  Limitations on accuracy occur due to false entropy generation by numerical
errors in regions where gradients of flow properties are large, and to
overcome this much finer grids are required than those which are
acceptable for methods that include an 'inbuilt' entropy conservation
condition. A (98x45) mesh points would be used for a 2D blade to blade
calculation.

4. Extension of the method to 3D is straight forward in a Cartesian co-
ordinate system requiring only the solving of an extra momentum equation
in the 3D. For turbomachinery problems, a 3D prediction is more useful if
performed in a cylindrical co-ordinate system so that it can be applied
directly to annulus blade rows as well as to cascades. This involves some
additional geometrical complexity but no extension to the principles of the
scheme.

NOMENCLATURE

C Chord

c Speed of a pressure wave (sonic velocity)

Cp Static pressure coefficient = (Ps-Po1) / 0.5%p *V%

Cp,Cv Specific heat of const. pressure & volume respectively

d S-shaped duct offset

E Internal energy per unit mass =cvT + 0.5*V2

g S-shaped duct gap

H Stagnation enthalpy = cpT + 0.5*V2

L S-shaped duct horizontal length

M Local Mach number

P Static pressure

R Gas constant = ¢p - Cy

S Projected area of face of element in direction of suffix

i Temperature

At Time step

\Y% Velocity

AV Volume of element

p Fluid static density
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Suffices:

(8]
X,y

Stagnation conditions
In Cartesian coordinate directions
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