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Abstrach To take full advantage of computational fluid
dynamics (CFD) in the design of internal flow
components such as the duct and-furbomachinery blade
rows, it is necessary to develop numerical methcids that
offer both accuraie solutioni for realistic flows and
minimum tum-around time and computer cost. IyVhile a
Navier-Stokes solver is reallv reouiled for the above
purpose, the problem of turbul<irce frodeling and the large
amount of CPU time make a fast and robust 2-D Euler
code (with its simplicity in the method) still a desirable
tool for routine applications. Results obtained from this
prediction are palt:icularlv useful in preliminarv desisn
i,rrork where iriformatiorion pressuie alone is'desirEd
and for problems where ihe viscous / inviscid
interaction is weak. An investigation on the numerical
teclrnique folEuler equations haE been made and applied
to internal flow pro-blems on a VAX-9000 computer.
Comparisons of virious duct flows simulation wer^e then
performed between numerical calculations and well-
documented experimental data. Their asreements are verv
encouraging. Preliminary results of both turbine anl
compressor flow computhtions were also conducted to
illushate the capability and limitations of these inviscid
predictiolp. The.time-marching strategy developed is
based on Denton's finite volumE algoriilim. Timri steps
are not severelv restricted when erid ooints are close'lv
distributed. Anbutline of the sctrerfie is iddressed and thlr:
current applications of the solver are assessed.
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INTRODUCTION 
;

Time marching approaches for predicting intemal flows have been developed for
more than 34 years [1 and 2]. The main advantages of these schemes are their
ability to calculate mixed supersonic and subsonic flows with automatic shock
capturing beside their great simplicity and the physical understanding resulted
from the solution procedure. The 2D and 3D Euler equations, though no viscous
effects, are still widely applied in fluid machinery design and are almost
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always solved by * explicit procedure. Methods for solving these equations are
now highly developed with several different numerical algorithms being
available. Implicit predictions have not proved more efficient than explicit ones
for this application, particularly when the latter uses multigrid (though not
implemented here) to accelerate the convergence.

The numerical procedure developed here is based on the time-marching method
developed by Denton [3]. The basic principle involved is to begin with a guessed
flow distribution and integrate the time dependent equations of motion and
energy forward with time until a steady state solution is achieved. This finite
volume integral method is claimed to be more stable than the differential
approaches [2] as all fluxes are conserved and changes of momentum equate to the
forces imposed by the boundaries once the steady state is reached.

The aim of the work is to demonstrate the capability of an Euler code to compute
the entire flowfield. In the following sections, a brief outline will be given of the
Euler solution procedure and then the solutions computed will be discussed and
presented. Comparisons of the calculated results with an existing inviscid flow
prediction and experimental data showed good agreement with differences being
consistent with the existence of viscous effects.

MATHEMATICAL FORMULATION

Governing Equations

The 2-D Euler equations with Cartesian coordinate system in the differential
form can be written as [3]:

Continuity

X-momentum
0(pV r)

at

= !rr'
dx

a= =(pdx

(1)

Q)

dp

0t
,l * 4 (pv,)

dx

+pvll*!{rr*ru)
dvr

O(pV") a a )----= = -(pv*vu)+ ^ (p+pvi)
dtdx"dy

Y-momentum
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Energy
a(pE) da= - (pV 

-H) + - (pVrH) (4)
dxtdy
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at

By applying these equations for conservation of mass, momentum and energy to a
series of control volumes with adjacent volumes sharing a conunon face and for a
time step At and element of unit length with control volume AV, the Euler
equations (1) - (4) become:

Continuity AV . Ap = At o Zn(PVx o dSx + pV, o dSr)

X-momentum 4l/ o A(pVy) = At.\npQ + pV2rl dS* + pVxVA.dsy)l

Y-momentum tv. a(pvy) = at o 2nyovxvu.dsy +@ + pvfi).dsyl

Energy AV o AE = At o \n(HpV* . dS, + HpVy . dSy)

The summations are made over the 4 faces of an element and dSx, dSy are tlte
projections of the face in the x and y directions. That is, we are solving the
equations (5) - (8) in integral form by applying the equations for conservation of
mass, momenfum and energy to a series of control volume with adjacent volumes
sharing a common face. In this way once the steady state is reached the net flux
into each elemental volume is zero so that overall mass and energy flows are

conserved and changes of momentum equate to the forces imposed by the
boundaries. The equations must be closed by an equation of state for the fluid
which for a perfect gas would be P = pRT. Since there is no heat flow and the
viscous work terms in an inviscid fluid, provided that the flow is steady relative
to the component being calculated and Prandtl number near unity, the energy
equation reduces simply to the conservation of stagnation enthalpy (or rothalpy
for rotor blades) along a streamline which is a well known steady flow energy
equation from basic Thermodynamics. This assumption implies that energy is
diffused by gradients of stagnation temperature rather than of static
temperature such that the stagnation temperature is constant through an

adiabatic boundary layer. This is known to be a good approximation for intemal
flow calculations except hypersonic flows. It is also much more efficient
computationally as no exponentiation is needed in obtaining the pressure from
the density via

T =(H-0.5*v2)/c, and P =rRT

(5)

(6)

(n

(8)
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Numerical Solution Technique
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A simple H-mesh is used due to its simplicity and flexibility' The time-

*ur"t ir,g method is applied to the H-grid consisting of quadrilateral elements

which do not overlap u.ra r,un" nodes only at their corners which reduces finite

differencing errors and allow complete freedom to vary the size of the elements'

Both these factors help to improve entropy conservation. In the turbomachinery

calculation, the quasi-str"u*lirt"" upstream and downstream of the cascade are

chosen to be roughly in line with the flow inlet and exit directions but these lines

do not control the flow direction. Periodicity is applied over the bounding quasi-

streamlines so that the boundaries exert zero force on the flow and do not control

its direction. The outlet flow direction is predicted as part of the calculation

being determined by the periodicity condition behind the trailing edge' The

fluxes through the'quasi-itreamlines are usually small compared to those

through tne fitctrwis" tir,"t and are obtained directly from the fluid properties

atthecalculatingpointsonthestreamwisefacesoftheelements.

The equations are solved in the order: uulss-Pressrre'momentum' The procedure

adopted is to update the density at all grid points then use the new density in

"o"i'".",i"" 
wittr tt e old velocities to get the pressure at each grid point (Eq' (q))'

rinatty, the new pressures together with the old densities and velocities are

uppri"J to update the *-*oo,"i.,tr* and y-momenhrm. The order in which the

momentun equations are solved is not important (i'e' T:*P-li"it scheme where

the new variables are not used in the time step in which they are calculated

with the exception that the new Pressure is used immediately it is available)' A

stability analysis has been developed for the scheme by Denton [4] where the

maximum perurissible time step is Atmil( = Axmin[({M2+16)'Ml / 4c'

To ensure stability, upwind differencing is adopted in the streamwise direction

for fluxes of mass "id 
*o*"r,tum whilst downwind differencing is used for

Pressure.Centraldifferencingisusedforallquantitiesinthepitchwise
direction. In the steady state, errots induced by upwind and downwind

differencing "," "oo.pl"t"ly 
,e*o,,"d by the use of flux correction factors that

correct the initial lrp*ir,a 
"Ird 

do*rr*ind flux estimates to accurate values based

on any desired intJrpolation procedure. In other words, the basic philosophy of

the marching scheme is to tike a very simple and fast first-order scheme and

progressivef add on a second- or higher-order correction as the calculation

converges. Details oi Uri" "Opposed Difference Technique" has been described in

lournal of Mechanical Engineeting Research and Datelopments'Vol'78' 7995
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[3] and has the useful property that its stability depmds only on the axial Mach
numhr, not on the absolute Madr numbet as is more usual.

The computer calculations for the complete program are very fast as virtually all
olrerations are arithmetic. Time requirements are about t.2xLt' seconds per point
per time step on VAX-9000. The number of time steps needed for convergence is
depended by the number of grid points in the axial direction since the CFL
condition requires that pressure waves cannot propagate more than one giid
spacing per time step for an explicit method. For example, convergence to the
steady state is achieved in 300-800 time steps for a (98x45) gnd.

Boundary Conditions

With subsonic inflow the total temperature, total pressure and flow direction
need be fixed at the upstream boundary whilst only the static pressure must be
specified at the downstream boundary. With supersonic relative inflow, it is not
usually possible to fix the flow direction and a condition of specified tangential
velocity at inlet may be used instead. This permits the inlet flow direction to
change as the calculation proceeds. The resulting solution will then satisfy the
unique incidence condition to the blade row for cascade flow calculation. If the
axial Mach number is greater than unity all flow conditions must be fixed at the
upstream boundary because pressure waves can no longer reach it to change the
inflow conditions. The static pressure at the upstream boundary must be obtained
either by extrapolation from the interior flow field or by use of characteristics
type relationships applied to upstream traveling pressure waves.

In brief, the boundary conditions applied at the downstream boundary are a
specified uniform static pressure on the last pitchwise line and a condition of zero
velocity gradient along the quasi-streamlines. At the upstream boundary the
stagnation Pressure and temperafure and flow direction are specified and there is
assumed to be no Pressure gradient along the quasi-streamlines. The static
Pressure on the first pitchwise line is takeil to be the same as that predicted on
the same guasi-streamline at the second pitchwise line. This static pressure is
used in conjunction with an assumption of isentropic flow from the stagnation
cctditions to calculate the velocity and density. The inlet flow is, thus, not
rrrc€scaril'y unifonn,

Iffirl of *bJtoflical Engineering Research and Datelopments,Vol.lS, lggi
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For the'turbomachinery prediction, the periodicity condition on the "free"

boundaries upstream and downstream of the blades is easily satisfied by

considering points outside the calculation domain to have the same flow
properties is points one pitch distant within the domain and then equating all

flow properties at corresponding points on the boundaries.

COMPARISON OF FLOW PREDICTIONS TO SOME

REPRESENTATIVE TEST CASES

Six test examples are included. We compare the calculation (for test cases 1,2,3

and 5) with others' data by keeping the flow Reynolds numbers of the

computation equal to the analytical/experimental ones. The matching of flow

"o.,ditior, 
is done through the proper scaling of flow geometry and only a

qualitative (not quantitative) comparison is made here for test cases 2,3 and 4'

The Circular-Arc S-Shaped Duct [5]

A simple but interesting test case is the non-diffusing (optimum), subsonic flow

through a circular-arc S-shaped duct (59x7 H-mesh) in which each of the two

arcs had equal centerline radii of curvature. The duct's two tums were completed

in 450 u.rd, thrrs it had an offset-to-length tatio, dfL, of approximately 0'4L4'

Figure 1 : Experimental Duct and Geometry Definitions'

lournal of Mechanical Engineering Research and Deaelopments,vol.LS, 1995
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Ttre cerrter-line radius of curvature was 508 mm for each of the tums and the gap*

was 101.6 urm as illustrated in Figure 1. The flow Reynolds numbers is 6.56x104

based on the inlet condition and duct hydraulic diameter.

The predicted wall surfaces Cp's along the top and bottom walls of the duct and

pressure, Mach number contours with streamlines velocity vqctor plots are

depicted in Figure 2. Good agreement is achieved over most of the duct profile
except near the rear part of the duct. In real flow, the major impact of viscous

a

I
!

l*

Figure 2: Predicted Flow Field Distributions for 450- 450 Circular-Arc-Duct.

;--offitTt irfnia-i{tniii*ii;;Aii;;;frim intet to exit centerlines whitst gap is
definid as the'constant radial spacing between ihe curced duct walls. The optimum duct
ifiplied that duct which was least'prone to separation. Note that Truckenbrodt's boundary layer
iniegral method (197il was used'in conjunction with a numerical potential JIow program in
refdence [51.

lournal of Mechanical Engineering Research and Dettelopments,Vol'18' 7995
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effects arises from the boundary layer blockage and if this can be modelled by

coupling the Euler calculation with a seParate boundary layer solution on the

wali surfaces then improved results may be achieved [5]. However/ many

aircraft use bending rectangular and circular duct geometries in the inlet and

exhaust of the propulsion systems. The performance of these types of ducts,

which may have strong secondary flows and can have an adverse effect on the

pressure dirtribrrtioo 1ie., cause high total Pressure distortion) and on Pressure

i""ot"ry at the engine face, should be determined by full 3-D Navier-Stokes

solver [7 and 8].

A Kidney-ShaPed Channel Flow [9]

In the second application, a kidney-shaped 2-D channel is used as the test

configuration, w-tictr exhibits greater degrees of geometrical complexities' The

dumf regions downstream of the inlet produce substantial flow recirculations;

thesJ recirculating eddies can strongly affect the curvatures of the main incoming

flow. The case selected here is for an inlet Reynolds number of. 6.2x103, and a

uniform incoming velocity profile, and constant fluid properties'

A (35x15) H-mesh is used for the present Euler predictions and the calculated

Mach number, static pressure and velocity vector distributions are shown in

Figure 3. A viscous computations are also included, obtained using a Pressufe-

ba"sed multigrid algorlihm [9] which solves the steady-state Navier-Stokes

equations.

Straight Channel Flow with Circular Bump [91

The third example is a straight channel with circular bump mounted in th9

middle of the lower wall. The height-to-length ratio of the channel is I' to 3' and

the height of the bump is 15% oith" intpt height. Figure 4 illustrates-the f13y

prediction and the mesh 
"mployed 

on the circular bump with an inlet Reynolds

number of 103.

Cylindrical and Elliptical Cascade

The next test case is the subsonic flow over a cascade of cylinders (65x51 H-cells)

or ellipses (92x5L H-meshes). The blunt leading edge creates a very highly

distorted mesh where numerical effors are expected to be large. These will then

|ournalofMechanicalEngineeringResearchandDeaelopments,Vol'1'8,7995
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Figure 3 : Solutions of KidneY-
Shaped Channel Flow with
Re=6.2x103.
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be shown up by a lack of symmetry of the predicted flow because entropy

generated at theleading edge will tend to produce a recirculating flow near the

iea, of the cylinder/ellipse. A promising scheme should Preserve the symmetry

(for low Reynolds r,*b", flow) and should capture a near stagnation point at the

downstream end of the cylinder/ellipse. Note that this is only true for subsonic

flow as if shock waves occur they will destroy the symmetry and recirculation

might exist as a result of the shock loss. Figure 5 illustrates the flow prediction

or,Ih" cascades of cylinders and ellipses with a peak Mach number of 0-76 and 0.7

respectively.

Figure 5: Computed Flow Around the cascades of Cylinders and Ellipses.

|ournal of Mechanical Engineering Resenrch and Deoelopments,Vol.l"S, 1995
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Compressor Cascade Ctl-Blade [L0]

The cascade to be tested consists a standard C4 section, each of chord 152mm,
pitch L52mm and span 455mm. The camber line is a circular arc with 40o of camber
(deflection) and the stagger angle is 15o when measured. from a line which is
normal to the cascade. This is a high camber, low stagger configuration and thus
it is more suitable for low Mach number application.

A (98xa5) H-mesh is used for the current Euler predictions and the calculated
Mach number distributions are shown in Figure 6. The flow Reynolds numbers is
2.17x105 based on axial chord and isentropic exit condition.

l3lrd l'Ldr
I 0.5745{5

H 0.5rL

o 0.51956
F 0.4&tol
E 0.'l54l8o
D O..*n&n
c 0.3e12t8

B 0380711

A O.En188

0 0.29e841

8 0.*e0e6
7 0.238t51

6 0208m7
6 0.17t16t2

a 0.1fi917
3 0.11837:L

2 o.wn
I 0056282

Figure 6 : Computational Mesh and Mach Number Distributions for C4
Compressor Blade. ;

Figure 7 compares the experimental and predicted blade Cp's. Other inviscid
cmrputations are also included, obtained using a finite element programme
(Whiehead, 1982 [10]) which solves the potential flow equations. Near the
lcading edge of the suction side and toward the trailing edge (particularly on

Iovr'nol of Mechanical Engineering Research and Deztelopments,Vol.l,S, 1.995
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pfessufe side), it may be seen that the inviscid values of cp are higher than the

measured value [10]. This is due to the absence of any viscous blockage effects in

the inviscid calculation. The absence of blockage produces a larger effective flow

afea and higher average cp values. However, these effects are not so noticeable

on the leadilg edge oithe'pr"rr.r." side as the initial curvature of the profile is

comparativelY small.

;lr t
-|; i

IG ori

FigureT:StaticPtessureCoefficients(Cp)forC4CompressorBlade'

After the separation, the inviscidly predicted Cp is greater than the measuted

cpas"*p".t"d.Thisisbecause.intheseparationregion,thesurfacestatic
pfessure remains mofe or less constant as there is virtually no motion inside the

bubble and the boundary layer is growing substantially' In fact, a separation

bubble is often identifiei Uy ttre constani static pressure r9gion' Overall' the

predicted results .orr,pur"a iavourably with the experimentally measured data.

The V.K.I. Transonic Nozzle Guide Vane 15'g$ [111

The last test example is the blade profile similar to the one of VKI's highly

loaded transonic linear turbine gnia" vane cascade LS-89 and the major

specifications are given in [11]'

Two operating modes were calculated for isentropic exit Mach numbers of 0'85 and

L.02 (7?5x49H-cells) and then compared with uotrr *re measured Misent' and the

inviscid solutions obtained by Holmes using a 2-D adaptive unstructured grid

loumal ol Mechanical Engineering Research and Dnelopments'Vol'78' 7995
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Euler solver [11] as presented in Figures 8 and 9 respectively. Again, good
agreement is achieved over most of the blade profile except near the rear part of
the blade. The accuracy of inviscid computations on a cascade depend largely on

- high tuming with a blunt trailing edge -- hangs entirely on the treahnent of
the trailing edge. We have chosen here to set a stagnation point at the node
closest to the point where the blade mean line pierces the trailing edge circle.
Within the realm of a purely Euler prediction, this is a very clean approach to
the problem of blunt trailing edges, but it may not give the most realistic
approximation to the true viscous solution. The strong accelerations and
decelerations at the trailing edge are due to the fact that these are Euler
calculations with the flow remaining attached at the blunt trailing edge. Note
that a Navier-Stokes solution would show a flow separation at the trailing edge
and the spikes would not be seen [8].

In summary, the limitation of Euler solutions when applied to difficult test cases

is discussed previously.

CONCLUSIONS

1. The validity of the assumption of inviscid flow obviously depends on the
type of flow to which it is being applied. For compressor blades, the
boundary layer blockage is much larger than turbine and inviscid
predictions can be seriously in error, especially for blades with strong
shock waves. However, for most furbine blades, the boundary layers are
so thin (typically displacement thickness about 1% of throat width) that
Euler computations give a very good estimate of the blade loading. In both
cases the major impact of viscous effects arises from the boundary layer
blockage and if this can be modeled by coupling the Euler calculation with
a separate boundary layer solution on the blade surfaces then improved
results may be achieved even for compressors.

2. The accuracy of the plesent methpd is largely determined by the accuracy
of the finite differencing employed on the solid surfaces (i.e. for the
implementation of boundary condition). hr the cascade flows, the rates of
change of fluid properties are largest around the leading edge of a blade
therefore, in order to minimize differencing errors, a much finer mesh is
desirable in this region. Also, some reduction of pitchwise grid spacing is
beneficial near to all solid boundaries so as to reduce the errors due to one
sided differencing.

loumal of Mechanical 
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Figure 8: Comparison of Mach Number Distribution with Isentropic Exit Mach

Number of 0.85 forTurbine Nozzle Guide Vane.
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Figure 9 : Comparison of Mach Number Distribution with Isentropic Exit Mach
Number of 1.02for Turbine Nozzle Guide Vane.
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c

Cp

Cp,Cv
d
E
ob
H
L
M
P

R
S

T
At
V
AV
p

Speed of a pressure wave (sonic velocity) 
2

Static pressure coefficienl = (Pr-Ps1) / 0.5*p *V1

Specific heat of const' pressure & volume respectively

S-shaped duct offset
Internal energy per unit mass = cvT + 0'5*V2

S-shaped duct gaP

Stagnation enthalPY = cpT + 0'5*V2

S-shaped duct horizontal length

Local Mach number
Static pressure
Gas constant = Cp - cv

Projected ur"u oi face of element in direction of suffix

Temperature
Time step
Velocity
Volume of element

Fluid static densitY
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3. Limitations on accuracy occur due to false entropy generation by numerical

efrors in regions where gradients of flow properties are large, and to

overcome this much finer grids are required than those which are

acceptable for methods that include an 'inbuilt' entropy conservation

"or,d-itiorr. 
A (98xa5) mesh points would be used for a 2D blade to blade

calculation.

4. Extension of the method to 3D is straight forward in a Cartesian co-

ordinate system requiring only the solving of an extra momentum equation

in the 3D. For turbomachinery problems, a 3D prediction is more useful if
performed in a cylindrical co-ordinate system so that it can be applied

iirectly to annulus blade rows as well as to cascades. This involves some

additional geometrical complexity but no extension to the principles of the

scheme.

NOMENCLATURE

C Chord
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Suffices:

o Stagnation conditions
x,y In Cartesian coordinate directions
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