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Abstract : A comparison of the theoretical invesfigation
of the dynamic stalling effect on the aerodynamic
performance of verticallaxis stra ight-bladed D'arrieus
wind turbines, is presented. To determine the
performance characteiristics, Boeing-Vertol and ECN
stall models are added independently to the cascade
method. Some improvemeirts in the performance
predictions of overall power coefficients and
instantaneous blade forces arb found for addine dvnamic
stall effect. From the comparison it is obse"rvdd that
Boeing-Vertol model shows better response.
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INTRODUCTION

In order to predict the performance characteristics of a Darrieus wind turbine
properly, the effect of dynamic stalling need to be considered at the lower tip
speed ratio. When the angle of attack remains constant or vary slowly with
time, the turbine encounters the static stall. But when the angle of attack
changes rapidly with time, the turbine experiences the dynamic stall. There are
substantial differences between the characteristics of the static and dynamic
stalls. The dynamic stall is a complex and unsteady flow phenomena.
Aerodynamic forces due to the dynamic stall may be much higher than those due
to the static stall. As result, for the performance prediction of Darrieus turbines,
especially for the local forces, there appear substantial differences between the
experimental data and the calculated values unless the dynamic stalling effect
is added.

A number of performance prediction models of Darrieus wind turbines have been
applied till today in many places. Among them, the three main models are :
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momentum model, vortex model and cascade model. Each of the models has got
some deficiencies.

Strickland (Strickland, 1975) introduced the momentum model which can only be
applied reasonably for the prediction of the overall performance characteristics
of a low solidity Darrieus wind turbine. This model offers limitation with regard
to its convergence problem at high tip speed ratio and high solidity. Strickland,
webster and Nguyen (strickland et al, \979) introduced the vortex model which
cannot always be used properly for the prediction of performance characteristics.
This model often creates convergence problem and in addition it takes very large
computation time. Hirsch and Mandal (Hirsch and Mandal , 19Bz) introduced the
cascade model which can be used reasonably for the performance prediction of
Darrieus turbines at all practical tip speed ratios and solidities. However, some
shortcomings in regard to its prediction of the instantaneous blade forces and
wake velocities are found. To improve this situation the effect of dynamic
stalling is added to the cascade model.

With a view to incorporate the effect of dynamic stall, two different stall
models such as, Boeing-vertol stall model (Gormont, 7973) and the ECN stall
model (Bulteel, 7987-88) are added independently to the cascade theory. To
simplify the analysis and eliminate the deficiency associated with the Boeing-
Vertol stall model, some modifications are made : one for lift characteristics in
the prestall condition and another for the drag characteristics. In the ECN stall
model the expression of the drag coefficient is modified in the similar manner as
that for the Boeing-Vertol stall model.

The effects of zero-lift-drag coefficient (Hirsch and Mandal, 7984) and the finite
blade aspect ratio (Clancy, 7978) are also encountered in the analysis. Two
dimensional aerodynamic lift-drag characteristics for the static condition are
taken from the references (Jacob and Sherman, 7937), (Sheldahl and Blackwell,
7976) and (Willmer, 7979). Comparisons of the experimental data and the
calculated values are made and it is observed that for adding dynamic stall
effect with the cascade model there have been some improvements in the
performance predictions.

BOEING.VERTOL STALL MODEL

In the model of Boeing-Vertol (Gormont,1.973), the blade angle is modified. The
modified angle of attack a6 (dynamic angle of incidence) is determined from the
following relation,
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(1)crd=s *,(ffi')r"
where o is the effective blade angle of attack, y and k1 are the empirical
constants, q, denotes the instantaneous rate of change of o, so is the sign of o and
w is the relative flow velocity. This modified angle of attack is used to
calculate the lift coefficient due to the dynamic stalling effect C14 in the
following manner,

0(
Cra = (o;)Cr (qa)

where Cr (aa) is the lift value chosen corresponding to the modified angle of
attack oa and the value is taken from the two-dimensional lift characteristics
with static stall condition. For low Mach Numbers and the aerofoil thic.kness to
chord ratios greater than 0.L, the value of y is,

T = 7.4-6(0.06-tJ (3)

where t" is the maximum aerofoil thickness ratio. The k, value changes with the
sign of the effective angle of attack and this is obtained from the relation.

kr = 0.75+0.25xS*

This formulation is applied (Gormont, [5]) when the angle of attack o is greater
than the static stall angle or when the angle of attack is decreasin g after having
been above the stall angle. The Boeing-Vertol stall model is tumed off when the
angle of attack is below the stall angle and increasing. For the present analysis
in the prestall condition, the dynamic stalling effect is also encountered from 61 =
5 degree upto the stall angle in the similar manner as that of ECN (Bultal, r9g7=
88). The dynamic lift crd is calculated by using the Boeing-vertol model and
according to ECN, the lift coefficient in the prestal condition is obtained from
the relation,

Cp = P6 C6 (aJ + (1 - P1) C, (o)

where, the factor P6 is determined from the following linear equation,
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P6 = (a-5)/(oq-5) (6)

where c, is the stalling angle. This equation reveals that at cr = 5 degree, P1 is

zero and at ., = cr' P6 is unity, which mean that at cr = 5 degree, the contribution

of C6 is zero while at cr = (xs, it is fulL

In the analysis to consider the effect of drag characteristics d-ue to the dynamic

stall, an empirical relation (Maniruzzaman and Mandal, 1993) is used which is

written in the form,

Cto n,^^u (7)(',, = 

- 
t,; {C{,}l\ru Cr(a)

where K is a factor. K is chosen as 1.0 in this expression' The equation (7)

signifies that, the dynamic drag characteristic is proportional to the dynamic

lift characteristic. bue to lack of experimental drag values, the calculated

dynamicdragcharacteristicscannotbeverifiedatthemoment'Flowever,the
nature of this equation more oI less follows that presented by Mc Crosky (Mc

CroskyetaL,LgS2)andopposesthenaturewhichisgivenbyMehta(Mehta'
Lg77). McCrosky considered the viscous flow while Mehta considered the ideal

flow in their analYses.

ECN STALL MODEL

The ECN stall model is introduced by Bulteel (Bulteel, 1987-88)' In this model'

the dynamic stall delay angle (in degrees) is expressed as follows'

Lu6 = 74.5 +4.4

The expression of dynamic angle of incidence is given as'

er = flcrl-GAa6lS"

where G is a constant which can be defined as'

G = Lforg2 0andG = 0'Sforcx'<0

An intermediate lift coefficient is defined as'
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cl
Cu (cJ = oo 

Ct (oo)

The dynamic lift coefficient is defined by linear combination

Cra = PrCri (aJ + ( 1- P) C1(o)

Pf = Pf (s, sr) is defined so that the hysteresis appears
stall.

Mandal €t Burton

(10)

(1 1)

near the stationary

)03s ss
a (deg.)

Figure 1 : The variation of P6 vs. cr.

In this model modification is done in the expression of the drag coefficient. The
drag coefficient is obtained from the equation (7) in the similar manner as that
obtained for the Boeing-Vertol stall model.

RESULT AND DISCUSSION

Figures 2 and 3 show respectively the comparisons of the static and dynamic lift
and drag characteristics. It is observed from these Figures that there has been
significant difference between the static and dynamic lift and drag-
characteristics. It occurs due to completely different flow phenomena in the case
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Fig. 2 Comparison of calculated lift coefficients in upstream sid.e.
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calc. (cascade with Boeing-Vertol stall model) (Gormot. 1973)
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Fig. 3 Comparison of calculated drag coefficients in upstream side.

calc. (cascade without dynamic stall)

calc. (caxade with Boeing-Vertol stall model) (Gormot. 1973)

calc. (cascade with ECN stall model) (Bulteel. 1987-88)
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of dynamic stalling condition (Mehta, 1977). One can observe from Figures 2 and 3
that the influence of dynamic stalling by the Boeing-Vertol model is higher
than that by the ECN model. In both the models during rising the angle of
attack, the lift and drag characteristics increase while they drop with lowering
angle of attack which is vivid from Figures 2 and 3.

In Figure 4, the comparison of the calculated values of overall power coefficient
and the experimental data from the Reading University (Mays and Musgrove,
1979), is shown. The running speed of the turbine varies from 3 to 7 m/ s. So, in the
present calculation mean wind speed Reynolds Number of 138000 is considered for
this turbine with solidity of 1.185. Very few experimental data are available for
their turbine and in addition these are scattered. It can be observed from this
Figure that there has been some improvement in the prediction due to addition of
dynamic stalling. Appreciable variation is found at the lower tip speed ratio
side. Since the effect of dynamic stalling occurs after the stalling angle very
negligible variation of power coefficient is observed at the higher tip speed
ratio side where the angle of attack for almost all the stations are below the
stalling angle.

0 .30

o .25

Fig. 4 Comparison of experimental and calculated overall power coefficients.

calc. (cascade without dlmamic stall)

calc. (cascade with Boeing-Vertol stall model) (Gormot' 1973)

calc. (cascade with ECN stall model) (Bulteel. 1987-88)

tr exPt. (MaYs and Musgrove, 1979)
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Figure 5 show the comparison of the calculated overall power coefficients and
the experimental data of the VUB wind tunnel test model (Decleyre et al, 1981).

The model test was conducted at the constant wind speed of 7.28 m/s. From this
Figure it is seen that there has been some increase of power coefficient value at

the lower tip speed ratio side due to the effect of dynamic stalling. At the

higher tip speed ratio very negligible change is observed. The phenomenon can

be described in the similar way as for the Figure 4. It is further observed that,

the effect of dynamic stalling by Boeing-Vertol model is greater than that by
the ECN model. For adding dynamic stalling improvement in the Power
coefficient is observed from this figure.

Alnfoil : NACA OO15
R"* - 5O0OO'

o - .97o
N -3
V - 7.2a n/s
AR - 5.0

1.50 2. OO

r (-R./v- )

Fig. 5 Comparison of experimental and calculated overall power coefficients.

calc. (cascade without dynamic stall)

calc. (cascade with Boeing-Vertol stall model) (Gormot. 1973)

calc. (cascade with ECN stall model) (Bulteel. 1987-88)

tr expt. (Decleyre et aI,1981) 
l

Comparisons of the calculated values of the instantaneous blade forces and the

experimental data from the university of Sherbrooke (Vittecoq and Laneville,

1982) are shown in Figures 6 and 7. The available calculated values of the

instantaneous blade forces by the double multiple streamtube method with
dynamic stall effect (Paraschivoiu, L983) are also plotted for the comparison.

Since, the lift drag characteristic of the airfoil NACA 0018 are not available in
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Fig, Z Comparison of experimental and calculated
non-dimensional normal forces

calc. (cascade without dlmamic stall)

calc. (cascade with Boeing-Vertol stall model) (Gormot. 1973)

.calc. (cascade with ECN stall model) (Bulteel. 1987-88)

calc. (double multiple with dyn. stali) (paraschivoiu., 1983)

tr expt. (Vittecoq and Laneville, 1982)

Figures 8 to 11 show the comparisons of the calculated instantaneous blade forces
and the exPerimental data from the Sandia Laboratories (Strickland et al,
1981). They present the water two tank data for a straight bladed Darrieus
turbine with the blade airfoil NACA 0012. The available calculated values by
the dynamic vortex model (strickland et al, 1981) and those by the quasi-steady
vortex model (strickland et al, 1979) are also considered for comparison.

It is observed from Figures 8 to L1 that for adding the effect of dynamic stalling to
the cascade model, there has been appreciable improvement in the prediction of
the instantaneous blade forces. If can be observed that the correlation with the
calculated values by the dynamic vortex model is not always consistent, in some
places it is reasonable and in some places over prediction is seen. On the other
hand, the calculated values by the quasi-steady vortex model always give under
prediction. Due to the addition of the dynamic stall, the net values of the lift
coefficients increase in the upstream side and decrease in the downstream side, as
a result the tangential and normal forces increase in the upstream side and
decrease in the downstream side in general.
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Fig. 8 Comparison of experrmental and calculated
non-dimensional tangential forces

calc. (cascade without dynamic stall)
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CONCLUSION

Mandal €r Burton

Due to the addition of dynamic stalling with the cascade model, there occurs
improvement in the prediction of the overall power coefficient at the lower tip
speed ratio range.

Some improvement are observed is the prediction of the instantaneous blade
forces of the Darrieus turbine for adding dynamic stalling with the cascade
model.

The Boeing-vertol stall model give relatively better response than the ECN
stall model when added to the cascade method.

At the present moment sufficient experimental data are not available to check
the expressions of lift-drag characteristics including dynamic stalling effect.
These are necessary to make further comparisons.

For further improvement in the correlation, other important effects such as, flow
curvafure, added mass etc. may be added to the cascade method in addition.

NOMENCLATURE

A projected frontal area of turbine
AR aspect ratio = H/C
C blade chord
C4 blade drag coefficient
Caa blade drag coefficient due to dyramic stali effect
C1 blade lift coefficient
Cta blade lift coefficient due to dynamic stall effect
Cti and intermediate lift coefficient due to dynamic stall effect
Clp lift coefficient for prestall condition
Cn normal force coefficient

Cp turbine overall power coefficient =po/:pAv-3
C1 tangential force coefficient

Frr+ non-dimensional normal force = Cn (W/V-)2
Ft+ non-dimensional tangential force = Ct(W /y*)2
G a constant

lotnnal of Mechanical Engineering Research and Deaelopments,vol.LT, 1994.
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H height of turbine
k1 an empirical constant
K factor to include dynamic stall
N mrmber of blades
P1 a factor in prestall condition
Po overall power
R turbine radius
Ret turbine speed Reynolds Number = Ro:C/v

Rew wind speed ReynoldsNumber = V-C/v
S6x sign of rate of change of angle of attack

ts maximum blade thickness as a fraction of chord
V- wind velocity
W relative flow velocity

tx, effective blade angle

o, instantaneous rate of change of c,

0d dynamic angle of incidence

cts stalling angle

y an empirical constant

Aod dynamic stall delay angle

0 azimuth angle
?," tip speed ratio = Rco/V-
v kinematic viscosity
p fluid density
o solidity = NC/R
o angular velocity of turbine in rad/sec
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