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Application of Cascade Theory for the Performance Prediction of Darrieus
Turbines with Blades of Cambered Cross-Section

N.R.Dhar*
4. C.Mandal **

ABSTRACT

The performance prediction of vertical-axis straight-bladed Darrieus wind turbines with blades of cambered
cross-section is performed based on cascade principle similar to that used in turbomachines. The correlation of the
calculated results including blades of cambered cross-section with those including blades of symmetric cross-section
show that there occur improvement in power characteristics if blades of cambered cross-section are applied.

MOMENCLATURE F* local non-dimensional normal force

= C, (W/V)?
&  projected frontal arca of turbine F,  force appearing in frictionless flow
AR  aspectratio = H/C F, force due to pressure loss
C blade chord F, tangential force
©,  blade drag coefficient ; F'  local non-dimensional tangential force
C,  overall drag coefficicnt =C, (W/V )
©. blade lift coefficient : _ .
C,  normal force cocfficient H  height of turbine
C overall power coefficient = P/(1/2p AV_?) K,  exponent in the induced velocity relation
C‘; overall torque cocfficient L blade lift force
C tangential force coefficient L, lift force appearing in frictionless flow
D Blade drag force L, lift force contributed by pressure loss
f maximum camber m  mass flow rate
F normal force (in radial direction) N number of blades
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static pressure

overall power

atmospheric pressure

overall torque

turbine radius at equator

turbine speed Reynolds Number = RoC/v
wind speed Renolds Number = V_C/v
blade spacing = (2% R/N)

induced velocity

wake velocity in upstream side

wake velocity in downstream side
velocity contributed by circulation

wind velocity

relative flow velocity

relative flow velocity appearing in rectilinear
flow

angle of attack

angle of attack in rectilinear flow

blade pitch angle

circulation per unit length

total pressure loss term (total cascade loss)
D/L

azimuth angle

tip speed ratio = Ro/V_

kinematic viscosity

fluid density

solidity = NC/R

angular velocity of turbine in rad/sec.

Subscript

=

£

a0 e

= €g<m<t<
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BT R R

"

-]
<

cQoUe 2o

d downstream side

u upstream side

X,y  X-axis, y-axis

1,2 - cascade inlet, cascade outlet

1. INTRODUCTION

The cascade theory presented by Hirsch and
Mandal [1] is applied for the performance prediction of
vertical-axis straight bladed Darrieus wind turbines. In
order to eliminate the convergence problem associated

with the momentum theory especially for a turbine with

high solidity, higher blade pitching and at higher tip
speed ratio and to avoid vortex model which cannot
always predict performance reasonably, rather it often
creates convergence problem and consumes very high
computation time, the cascade theory is used in this
analysis.
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: The analysis incorporates the turbinc blades of
cambered cross-section in place of conventional
symmetric one. Using blades of cambered cross-
section, the lift forces increase in the upstream side and
decrcase in the downstream sidc in general if
compared to those for a turbinc with blades of
symmetric cross-section. As a result higher power is
produced in the upstream side and lower power is
produced in the downstream side if comparcd to those
produced by the turbine with blades of symmetric cross
section. However, the net power production of the
turbine with blades of cambercd cross-scction is always
higher than that with blades of symmetric cross-section.

Aspect ratio effect is encountered in the analysis
in accordance with the reference [2]. The effect of zero-
lift drag coecfficient is taken into account in the
calculation referring to the model presented by Hirsch
and Mandal [3]. References [4], [S], [6] and [7] are
consulted in order to consider the lift-drag
characteristics in the calculation.

2. AERODYNAMIC THEORY
2.1 Blade Angles and Velocities
The expressions of angle of attack and relative

flow velocity for upstream side may be written as,
referring to the figures 1 and 2,

aa =lan-l sin@ ] (1)
5(3/—?-9- + cos6
VOO (- -3
w 1
ou _ am R(nf au 2502 ;
: = v [(Vw vw)+cose] +sin’ 0 (2)

For downstream side similar expressions of

angle of attack and relative flow velocity are obtained.

: The Darricus turbine is assumed in the form of
cascade after finding the angle of attack and relative
flow velocity as shown in the figure 3. The cascade is
considered in a plane normal to the turbine axis. If the

blade represented by (1) at an azimuthal angle 6 is
considered as the reference blade, the flow conditions
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on the other two blades represented by (2) and (3) are
assumed to be equal to those of the reference blade. This

process is continued for one complete revolution of the.

reference blade with a step of 50,

In the following analysis, the gencral
mathematical expressions are obtained, for upstream
and downstream sidcs by omitting the subscripts u and
d. However, thesc expressions may be applied for
upstream and downstream sides by subscripting the
variable parameters (dependent on sides of turbincs)
with u for upstrcam and d for downstream.

The velocity diagram on the reference blade

clement of the cascade configuration is shown in the
figure 4. A control surface is considered in this figure
consisting of two lines parallel to the cascade front and
two identical streamlines having interspace t.

The relative flow velocities ( W,. W,) and the

angles of attack (&, 0., ) at the cascade inlet and outlet
may be determincd from the figure 4. Blade element
upstream and downstream sides are respectively termed

as cascade inlet and outlet. W, w,, o, and o, are
expressed as,

2
v ow AW - vy
1 X y E
T e )
Yooy '
2
w§ w? (W +v)
X Yo . E
SRR S “
gy o Gaenys a
o, = tan T e — 5
1 W -vV)/V
( . 1.)/ =
il wx/Voo
oy =tan [ ] (6)

(wy + Vr) /v

where V_is the velocity contributed by circulation T'H.
¥ 1s written as,

y . TH _ NrH

L % 47R

(7)
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2.2 Aerodynamic Force:

Along the bounding strcamlincs the pressure
forces are cancelled (figure 4), viscous forces can be
ncglected outside the boundary layers. Only there

‘remains the momentum flux through the straight lines

parallel to the cascade front. So the force in the tangen-
tial direction due to the rate of change of momentum is
obtained as,

o -
Fl =m ( chosa2 - Wl cosa, ) (8)
Applying the continuity equation, thc mass flow ratc m
can be determined as,

m= pHt W, sina; = pHL W, sina, =pH W, (9)

The force in the normal direction to the cascade may be
found as,

; o . .
, Fn = m(W1 sinat, - W2 sina,y )+ Ht (Pl = P2) (10)

Considering the total cascade loss by a total pressure
loss term AP_ and using Bernoulli’s cquation between
the cascade inlet and outlet, one obtains,

PI.P2=§-(W§-wf)+APOV (11)

2.3 Velocity Contributed by Circulation ;

The circulation about the blade profile is defined
as,

I =4W8§ (12)

Its contribution along the streamlines is cancelled by
virtue of the opposing directions of S, while the
contribution along the parallel direction of the cascade
front is retained. As a result the circulation becomes,

=t (W2 cosaL, - W1 cosal) (13)
From the equations (8), (9) and (13), onc may obtain,
F =pW TH (14)
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Figure 1 : Horizontal section of a straight-bladed
Darrieus Turbine showing flow velocity

Vnu
ou

Figure 2: Relative flow velocity on a Cambered blade airfoil
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Figure 3: Development of blades into cascade configuration.
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Referring to the figure 5, the lift force can be found as,

L=L, + L, (15)
where, L., = Ft/ sina (16)
L, = Decotoy (17)

Introducing x = DJ/L, substituting cquation (14) and

inserting W W_sino, from the figurc 4, the final
form of the ﬁf[ may be written as,

r
L =pW,H—mr—— (18)
9 (1-€cota0)

The lift force L is defined as,

1
L= 2C pWCH (19)

Finding the circulation from the equations (18) and
(19), substituting into the equation (7), the velocity con-
tributed by circulation is obtained as,

Vv

SSTeEied b
\Y

iR (1 scotaO)H (20)

2.4 Total Pressure Loss Term

Referring to the figure 5, the normal force due to
pressure loss is found as,
D

sinQ,
0

nv

(21)

The force due to presswre loss may also be written as,

E = LAR N (22)

The drag force D is defined as,

1
D=5Cdpw(2) CH (23)

. Féom the equations (21), (22) and (23), the pressure loss
term may be expressed, introducing t = 2aR/N, as,
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2.5 Velocity Ratios

Using Bernoulli’s equation with the absolute
velocities in front of and behind the cascade, the
following equations are obtained,

@, - Py) = g-(vi- v2) (25)

Subscripting the variable parameters in the equations
(11)and (24) by u for the upstream side and substituting
into the cquation (25), the wake velocity ratio for the
upstream side may be determined as,

1

e 2u lu 1 /NC Cm wf)u
— = -—(— : sl (26)

B 2 R sina V2

ou Y

Similarly the expression of the wake velocity ratio for
the downstream side can be obtained as,

|
W
_y_ 2d di NG, W o
€ 2 mkoeel 2
* od
(3

Inorderto detemune the induced velocity, rclationships
between wake and induced velocities as in the reference

[1] are applied which are, for upstrcam side,
V) v

oo (2K (s
- v (28)

oo (- -]
for downstream side,

V) v
g N iy
V) Y

ki

(29)

e g
The value of the exponent k is found from the following
relation in accordance with the reference [1].

ki T Y . 425 4+, 3320) (30)

where o = NC/R is the solidity of Darrieus turbine.

Mech. Engg. Res. Bull.,,Vol. 12, (1989)




Conftrol
surface
L e T
il 6 5

t:ZNR/_N
e Wy

P Ve - Vp ——=

W, Wo

&
W1

l—zs—+

Figure 4: velocity diagram on the blade section.
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Figure 5: Force diagram on the blade section.
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Figure 6: Velocities and forces on blade airfoil with pitching.
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2.6 Blade Pitching

Figure 6 shows the velocitics and the forces
acting on the blade airfoil with pitching. In this analysis
pitching is considered to be positive for the blade airfoil
nose rotating in the outward dircction from the blade
flight path. As a result for the upstrcam side the angle of
attack becomes.

g sa0 sy 31)

and for the downstream side the angle of attack be-
comes,

e LR (32)

wherey_ and y_, arc the pitch angles in the upstrcam and
the downstréam sides respectively. Lift drag

characteristics are taken corrcsponding to o and o

2.7 LiftDrag Characteristics

The airfoil characteristics for the cambered
blade profile are not available for the wider range of
Reynolds number and the angles of attack. But these are
necessary in the calculation of performance prediction.
As a result a method is developed in order to modify the
lift drag characteristics of a symmetric airfoil to be
applicable for the cambered airfoil with same thickncss.
The calculated lift drag characteristics by the applicd

method give excellent corrclation with the available
experimental values of C, - C, characteristics for the

cambered airfoil.

Using the concept of thin airfoil theory airfoil
characteristics are modified. The expression of
modificd angle of attack is written as,

amod S 0tt:or (33)

where o is the corrected angle of attack to take into

account of camberness effect and o is the calculated
angle of attack. C, - C, are chosen corresponding to the

value of a__, from the C, - C, characteristics of a
symmetric airfoil. o is obtained from,
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= = _] f
= tan e 34
0Lcor ! G t ( )

where [ is the maximum camber of the blade profile.
3. RESULTS AND DISCUSSIONS

The calculated valucs of overall power, torque
and drag coefficicnts for the turbine with blades of
cambered cross-section are compared with those for
the turbine with blades of symmetric cross-section,
which can be scen from the figurcs 7, 8 and 9
respectively. One may observe from thesc figures that
the performance characteristies of a turbinc with blades
of cambered cross-section improves if compared (o

those of a turbine with blades of symmetric cross-.

section. The figurcs 10,11 and 12 respectively show the
comparisons of power cocfficients with tip speed ratios
at diffcrent fixed, sinusoidal and combined (fixed plus
sinusoidal) bladc pitching. Comparative results of
turbines with blades of both cambered and symmctric
cross-scctions are also included in these figures. These
figurcs reveal that cmploying blade pitching there occur
improvement of power coelficicnts.

In general for the turbine blades with cross-
scction of cambered profile, lift values increase in the
upstream side and decrease in the downstrcam side
resulting higher torque in upstrcam sidc and lower
torque in downstream side in comparison to thosc for the
turbine blades with cross-section of symmetric profile.
However, the combined effect on torque due to the
upstream and downstream sides of the turbine with
blades of cambered cross-scction creates higher torque
thereby making improvement of rotor power but not in
appreciable amount in each of the cases with and
without blade pitchings.

In the figurcs 13 and 14 respectively,
comparisons of the values of induced velocity ratiosand
local angle of attack calculated by cascade theory with

~ blades of both cambered and symmetric cross-scctions

and simple multiple streamtube thcory arc made. The
tip speed ratio iskept constant at 4.5. From the figure 13,
it is seen that the induced velocity ratios by the cascade

theory differ significantly from thosc by simple

‘multiple  streamtube theory.In the simple multiple
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Figure 7 : Comparisons of overall power coefficients at various .‘;
solidities. |
Symmetric (NACA:0015) : — e —_—
* Cambered (NACA :1415) : a X o ]
Solidity, o : 200 .300 .400 |
\
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Figure 8 : Comparisons of overall torque coefficients at various
solidities.
Symmetric (NACA : 0015) s — —_—-— ——
Cambered (NACA : 1415) A X o
Solidity, o~ 2l .300 .400
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Figure 9 : Comparisons of overall drag coefficient at various
: solidities.
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Figure 10 : Comparisons of overall power coefficients with tip speed
ratios at different fixed blade pitchings.
Symmetric (NACA : 0015) —— e
Cambered (NACA : 1415) 4 x o
Yp’ fixed (in deg.) : o 3 6
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Figure 11 : Comparisons of overall power coefficients with tip

speed ratios at different amplitudes of sinusoidal
pitch variation.
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Figure 12 : Comparisons of overall power coefficients with tip
speed ratios at different combined (fixed plus
sinusvidal) pitch variation.
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Cambered (NACA : 1415) A X o
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Figure 13 Comparisons of induced velocity ratios.

A  calc. (cascade theory ; NACA : 0015)
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Figure 14 : Comparisons of local angles of attack.

A cale. (cascade theory ; NACA : 0015)
X cale. (cascade theory ; NACA : 1415)
0 calc. (simple multiple streamtube theory; HACA:0015)

Mech. Engg. Res. Bull,, Vol. 12/(1989)

67



Ff.

68

=
(]
|

wonowonon

20.0

r20.0

R RO

Figure 16 :

A
X
(o]

200. 800

8 (deg)

Comparisons of local non-dimensional normal forces.

calc. (cascade theory ; NACA : 0015)
cale. (cascade theory ; NACA : 1415)
cale. (simple multiple streamtube theory; NACA:0015)

= 1380000 =300
= .143 .
= 18.7 3
sradl .
= 50.6 2
=429 —2.00

1.00

Figure 15 :

o X b

100.
0 (deg)

Comparisons of local non-dimensional tangential
forces.

cale. (cascade theory ; NACA : 0015)
cale. (cascade theory ; NACA : 1415)
cale. (simple multiple streamtube theory; NACA:0015)

300.

Mech. Engg. Res. Bull,, Vol. 12 (1989)



strcamtube theory it is assumed that the induced
velocities in the upstream and the downstream sides of

* the rotor are constant. But in the cascade theory for the
upstream and the downstream sides thesc are ca culated

scparatcly. In the cascade theory, the drop of axial
velocity occurs twice one in the upstrcam side and
another in the downstream side. The wake velocity in
the upstrcam side acts as the inlet velocity in the
downstream side. As a result the induced velocitics in
the upstream sidc are higher than thosc in the
downstream side which is depicted in the figure 13,
From this figure it is also observed that the induced
velocity ratios calculated by cascade thocry for the
blades of cambered cross-scction varics in small
amount in comparison with thosc calculated by cascade
theory for the blades of symmetric cross-scction. In the
upstream side for the blade cross-scction of cambered
profile the lift valuec increascs, making the hi gher blade
clement drag force in free stream velocity dircction
which is to be balanced by the higher drag produced duc
to the change of momentum and it occurs with the lower
value of induced velocity.

It may be observed from the figurc 14 that the
local angles of attack by the cascade theory differ
appreciably from thosc by simple multiple strcamtube
thcory. But the local angle of attack valucs by the
cascade theory for the blades of cambered Cross-scction
differ in small amount from thosce by the cascadc theory
for the blades of symmetric cross-section. Figure 13
reveals that induced velocitics in the upstrcam side fall
for the cascade theory with blades of cambered cross-
scction than those for the cascade theory with blades of
symmelric cross-scction, which is the rcason of
relatively lower angles of attack in upstrcam side.
Similarly anglesofattack in the downstream sides may
be explained.

Referring 10 the figures 15 and 16 for the
comparative values of non-dimensional langential and
normal forces, one may obscrve that by cascade theory
with blades of cambered Cross-scction and symmetric
cross-section, the forces in the upstream side arc higher
than those in the downstream side while by the simple
multiple streamtube theory, these forces arc cqual in
both upstream and downstream sidcs. Figure 15 shows
that higher forces are produced in the upstream side than
those in the downstream side. This can be explained
casily from the figurc 14 showing anglc of auack
distribution. Thesc angles are below the stalling angle,
so for higher angle there is higher lift, hence higher
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langential force and vice versa. Cascade theory with
blades of cambered cross-section giverelatively higher
blade lift valuec which is the outcome of relatively higher
local tangential force in the upstream side. Figure 16
showing local normal force distributions may be
cxplained in the same manner as for the case of
tangential force distribution in the figure 15.

4. CONCLUSIONS

Performance of a vertical axis straight bladed
Darricus wrbine with blades of cambered Cross-section
improves but not in remarkable amount if compared o
that of a Darricus turbine with blades of symmetric
cross-section.

Employing blades of cambered Cross-section in
place of symmetric cross-section, the local values of
power increase in upstrcam side and dccrease in
downstream sidc in gencral.

Performance analysis has been made with the
cascade theory mainly because the momentum theory
fails to predict the performance ‘at higher tip specd
ratios, at higher solidities and higher blade pitchings.
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