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Formation Process of Taylor-Cortler Vortex

H. Yamaguchi Ph. D

Abstract

Formation process of Taylor-Gortler vortex in
the gap between two concentric spheres is inve-
stigated numerically. The axisymmetric Navier-
Stokes equations are solved for the laminar visco-
us flow with the stationary outer sphere and
the rotating inner sphere, The results obtained
show qualitative agreement with the experiments
reported by Wimmer and Nakabayashi. The
numerical results obtained in the present study
indicates that prior to the formation of Taylor-

Gortler vortex, a very weak independent vortex
appears in the boundaey layer formed on the inner
shpere. The boundary laye‘r then separated at the
region where the weak vortex appeares, and on
the next instant the cellular structure of vortices

occupies the gap space as Taylor-Gortler vortices.

Introduction

The motion of the fluid contained between
two concentric spheres in rotating systems has
received much attention over the past decade,
particuraly in the field of geophysics and engin-
eering design.

Taylor (1) investigated the fluid motion
between two concentric rotating cylinders with
inner one rotating and the outer one stationary.
When the rotational velocity is very small, the
flow becomes a simple shear flow, which is the
basic flow (Couette flow), in the direction of
the rotation. By increasing the rotational velocity
and at a critical Reynolds number, the hydrody-
namic instability causes the flow to form a cell-
ular pattern structure of vortices in the gap space.

Similar phenomena appears for the flow bet-
ween two concentric rotating spheres with a
common axis. However, in the case of spheres
the centrifugal forces are a function of the latit-
ude, resulting in the existence of different types
of flow pattern. Theoretical and experimental
works have been carried out by many researchers.
Wimmer (2) and Nakabayashi (3) conducted
their experiments and reported various phenom-
ena of flow regarding the formation of Taylor=
Gorlter vortices in sufficient details. On the
other hand, theoretical works have been done by
Munson et al (4) (with experimental studies
as well) and Schrauf (5). The works
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The circumferential components of the equations
(2), (g) and (3) are now shown as:
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whereD? is a differential operator defined as:
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The vorticity used in the euqation (9). (10)
is a direction component of vorticity vector.
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In order to nondimentionalize the equations (9)
(190) and (11), the following parameters are int-
roduced.
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where o, is a reference angular velocity.

It is noted that the suffix 1 and 2 indicate the
inner and outer spheres respectively. The foll-
owing sets of nondimentional equations are then
reduced :
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Boundary Conditions

The boundaiy conditions are stokes’ no-slip
condition at the walls of the spheres, while
at the equatorial plane 0==/2 and the axis
of rotation 6=0, the symmetric conditions
are imposed. The vorticity on two walls is
solved with the condition of §S/5 R=0. Fig.

2 shows a schematic diagram of the boun
dary conditions. The inner sphere rotates

¥*
with an arbitary angular velocityem,(t) and the
outer sphere is kept stationary. The angular
acceleration of the inner sphere in the spin-

*
i is defi
period is @€ ined as dm,= The

dt
constant is determined from a given steady ang-
ular velocity and the time step chosen in the

calculation.

up const.

21



deal with the instability of the fluid to estimate
the critical Reynolds number as well as predict-
ing the field. Among others, there are papers
by Pearson (6) and Bartels (7) who solevd the
governing partial differential equations with the
finite difference method. Varicus modes of the
flow were investigated with differnt conditions.
However, since their results are shown for time
infinity in which the flow reaches the steady
state, no detailed process of forming Taylor-
Gortler vortex has been found.

in this study, time dependent formation
process of the Taylor-Gortler vortex is concer-
ned for the flow field in spherical gaps where

Taylor Gortier vortices are expected. In order
to obtain & typical case, spacial and physical
parameters are chosen according to the Wimmer’s
(2) experiments. The unsteady motion of an
incompressible viscous fluid is considered when
the inner sphere is impulsively accelerated to
a given angular velocity. Axisymmetric Navier-
Stokes equations written in terms of the stream
function, engular velocity function and the
vorticity are solved by means of the finite differ-
ence technique for the initially stationary flow.

Basic Equations.

Incompressible viscous hydrodynamic equa-
tions are :

v. v=0 (1)
Dv 1
TR TP Ry Y < (d)
where v : flow velocity vector
p : density

P : pressure
v : kinsmatic viscosity
The vorticity vector is defined as follows;

L=r0t v (=\/XV) (3)

The velocity vector v can be written with
two scalar function ¢ and @, which satisfy the
continuity equation (1) as;

v=Y ¢ xV o (4)
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where ® is chosen for the meridian plane in
the case of axisymmetric condition.

The fluid is contained between two con-
centric spherical shells in which the inner
sphere rotates with an arbitary angular velocity
o. In Fig. 1, spherical coordinates system (r, 6, @)
is shown where r; is an inner radius andr;
is an outter radius. Since the flow is axisy-
mmetric, the velcgity components can be expre-
ssed in terms of the stream function ¢ (r, 6; t)
and the angular velocity function Q (r,0;t)

where Q is defined according to ®=Q(r, 6; )¢

Fig.1 Spharerical coordinates system

Therefore, the velocity cowponents are as follows

1 3¢ (8)
Ve=h=pig 56
1 3¢ (6)
L e = Sr
Q (7
e r sind

The momentumn equation (2) can be further
reduced into the vorticity transport equation as
shown beiow:
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S @i®erence formulae of the equations (16),
§i7 amd (18) is then given by following forms ;
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where Res means residual of the finite difference
sawation and B is a over relaxatiion factor. It is
seted that n is a number of time step and | isa
mumber of iteration.

The vorticity at the walls influences the whole
solutian in the flow domain. In this study, Jens-
#n's formula of second order of accuracy is used
glong with Schauf (5).
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&ccuracy, stability and convergence of the solu-
sions are very much affected by a choice of /\R,
A& At. In the present study, these paramenters
ar= determined from actual runs of computer pro-
gram in order to meet sufficient accuracy, stabil-
ity and speed of convergence of the solutions,
The parameters used in the numerical calucula-
tion are showen in Table. 1.

Table 1. Numerical parameters

Number of division for R : M=16

Mumber of division for 6 ; N=91

Time step : At=0.111
Step length for R : /A R=0.00667
Step length for 6 : A\ 0=0.0175
Over relaxation factor : B=1.4

The physical parameters used in the calucul-
ation are ajso shown in Table 2. The value of
these parameters are mainly quoted from Wimmer's
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(2) experiment where Taylor-Gortler vortices are
expected to form.

Table 2. Physical parameters

Radius of inner sphere s 0072 (m)
Radius of outer sphere  : r,=0.080 (m)
Gap ratio : 6=0.1

Kinematic viscousity : v=1.21x10%  (m?/s)

The calculations are carried out with a comp-
uter HITAC-M280H in Doshisha University com-
puter centre.

Results and Discussions

The computation was carried out for the steady
Revnolds number of 2000, It is noted here that
the critical Reynolds number for 6=0.1 is approx-
imately 1200 according to Bertles (3). In the
present study, therefore, it is assumed Re=2000

for which a steady pair of Taylor-Gé'rtIer vortices
are expected.

in Fig. 4 the results of the calculation are sho-
wn for the stream function, the contour lines of
the stream function against time variation, where
K indicates the number of time step after the cal-
culation started at K=0 (t=g sec.). At early stage
K=1, immediately after accelarated from the rest,
the flow contained large cell ranging from the
pole to equator. This is the secondary flow mo-
tion against the basic main flow. The two bou-
ndary layers, the inner one at the rotating sphere
and the outer one at the stationary sphere, app-
ear in the gap.Itis seen from Fig. 4 for K=1
that the inner boundary layer, in which the mer-
idional velocity component is almost paralell to
the surface and the flow is directed from the pole
to the equator, is thinner than the outer one. This
flow mode is also observed for low Reynolds nu-
mber, which is well below the critical value, in
the experimental studies (2) and (3).
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The boundary conditions in Fig. 2 are summs
arized below for (a) to (d).

Fig. 2 Boundary conditions
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In order to solve the equations (15)-(18) with
the boundary conditions given above, the equa-
tions are discretized by central differences of -
second order. The domain of solution consists
of equally divided finite difference meshes, as
shown in Fig. 3.

Fig. 3 Finite diference mesh
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Three points approximation formula is used for
derivatives appeared in the equations {15-18), in
which the truncated error occured in the calcul-
ation is of order 0 (At2, AR2 A6%). For the equ-
ations (16) and (17) which include time deriva-
tives, the implicit solution technique with the
method used by Peaceman and Rachford (10} is
adopted so as to obtain fast convergence and
stability of the solutions. On the other hand, for
the elliptic type of the equation (18) the success-
ive over relaxaticn method is used. These meth-
ods used in the present study are described else-
where in the references (6), (7) and (8). The

Mech. Engg. Res. Bull. Vol. 10, (1 987)



As time lapses K=55 (t=6. 11 sec), on the su- ndary layer in this region Is thus grown because
rface of sphere near the equator 62 80° the mer- the merdional mass flux Is transported. into the
idional velocity decrease in this ragtion. The bou- layer near the wall. The velogcity distributions in

N

£=55 K=56

K=1

TIHE=0.11 Sec TIHE=6.11 Sec TIME=6.22 Sec

K=57 ' K=100  X=200
TIME=6.33 Sec TIME=11:11 Sec. TIMNE=22.22 Sec.

F'g. 4 Stream function contour lines Re =2000, ¢=0.1 and A1=0.11 sec)
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this reglion at 6=281° are shown in Fig 5. In Fig. 5.
(a) shows the meridional velocity and (b) shows
the circumferential velocity as definad below :

g u (24)
=F 5 01t sinb

F(v.06,t)ysin6

It is nioted that in Fig. 5, u has positve value
for the direction of increasing R and w has pos-
itive va'us for the direction of rotation of the
inner sphere. As shown in Fig.5 (a) for K=55
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of independent cells occupy the gap space near
the equator.

The shape of Taylor-dbrtler vortex isalmost
square whose size is nearly equal t> the gap
size, aithough in Fig. 4, some scaling against
the radius was done in order to show the vortices
clearly. This shape of the vortices are also
observed from the experimental studies of Wim-
mer (2) and Nakabayshi (3).

After formation of Taylor-Gortler vorties in
the gap, the configuration of the vortices are
almost settled with the passage of time, although

Fig. 5 Velocity distribution { 6=81°)

and 56 the decrease of the meridional velocity is
cbvious. It is though that in this region at K-55,
the flow condition is similar to that in the flow
along a concave curved wall where the boundary
lzyer is unstably stratified. Then on the next
imstant K=56, a very weak eddy motion of a small
independent vortex appears in the inner boundary
ieyer. This vortex grows and moves toward cen-
w2 of the gap, causing tho separation of the bou-
ndery layer. At K=57 es shown in] Fig 4. a pair
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some movement of the vortices is found. This
is shown in Fig. 5 (a) where the velocity u
at K=100 and K=200 are different due to
shifting of the cell. This motion might be
caused by the Coriolis force physically and from
a view point of numerical calculation the solu-
tion of the equations are still developing.

in the present study, qualitative agreement
has been reached with the results obtained by
Wimmer (2) and Nakabayashi (3). However,
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in the nature of the flow situation the flow
is generally three-dimensional so that the solu-
tion must be obtained in a symmetric breaking
situation. Particularly, this is important for large
gap size. Furthermore, the heat dissipation may
be included in the calculation to simulate more
general situations. These are out of scope in
the present case and further study should be
necessary.

Conclusion

A viscous incompressible  fluid contained
between two concentric sphere, where the inner
one rotates and the outer one is stationary, is
investigated. The solutions of the axisymmetric
Navier-Stokes equations are obtained by using
finite differnce method, and the results show
the formation process of Taylor-Gortler vortex.
Qualitaive agreement has been reached with the
experimental studies conducted by former resea-
rchers. It is revealed that Taylor-Gortler vortex
appears immdiately after the formation of a week
vortex in the boundary layer adjacent to the inner
sphere wall,
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