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Fcrmation Process of Taylor-G6rtler Vortex
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Abstract
Formation process of Taytor-Gortler vortex in

t1'e gap between two concenttic spheres is inve-

s: gated numerically. The axisymmetric Navier-

Stokes equations are solved for the laminar visoo-

us llow with the stationary outer sphere and

ihe rotating inner spherc. The results obtained

show qualitative agreement with the expetiments

reported by Wimmer and Nakabayashi' The

numericat results obtained in the present study

indicates that prior to the formation of Taylor-

Gcrtler vortex, a very weak independent vortex

appears in the boundaey layer formed on the inner

shpere. The boundary layer then separated et the

rregion where the weak vortex appeales' and orl

ihe next instant the cellular struclure of vortices

occupies the gap space as Taylor-Goitler vorticcs'

lntroduction
The molion of the fluid contained betvueen

two concentric spheres in rotating systems has

received much attention over the past decade,

particuraly in the field of geophysics and rngin-

eering design.

Taylor ( I ; investigated the fluid motion

between twoconcentric rotating cylinders with

inner one rotating and the outer one stationary'

When the rotational velocity is very small, the

flow becomes a simple shear flow, which is the

basic flow (Couette flow)' in the direction of

the rotation. By increasing the rotational velocity

and at a critical Reynolds number, tho hydrody-

namic inrtability causes the flow to form a cell-

ular pattern stlucture of vortices in the gap space'

Similar phenomena appears for the flow bet'

ween rwo concentric rotating spheres with a

common axis. However, in the case of spheres

the centrifugal fotces are a function of the latit-

ude, resulting in the existencs of different tYpes

of itow pattern. Theoretical and experimental

works have been cartied out by many researchers'

Wimmer (2) and Nakabayashi (3; conducted

their experiments and teported various phenom-

ena of flow regarding the formation of Taylor-

Gorlter vortices in sufficient details' On the

other hand, theoretical works have been done by

Munson et al (4) twith experimental studies

as w'ell ) and Schrauf (5)' The works
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wheteD2 is a differential operator defined as:
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The vorrlcity used in rhe euqation(9). (t0)

ie a dlrection component of vorticity vector,

- ('!3)
E=8. ed

ln order to nondimentionalize the oquetions (9)

tl0i and (11), the following parameters are int'
roducod.

Stream function t 5=--t-'' "-G)o rr3

Angulat velocitY: F :-,+
ooI2'

function

Radius ;6=-!-
l2

Angutar velocitY t .l =3-'oo

The circumletential compononts of the equations
(2), (e) and (3) ale now shown as:

*+= v D2o (e)

Vorticlty :

Reynotds No. : Re:$ rf

(vr, v'0' vd): (u, v, w)=-;;t

Gap tatio , o=tfl:1-7 (141
l2

whele oo is a reference angular velocity'

It is noted that the suffix 1 and 2 indicate the

inner and ,outer spheree respectively. The foll-

owing sels of nondimentional eguations are then

reduced :

" 1 8s .r=---L sf,, *=-!-u:mi;o- T5'-' Rsino 8R =Rsino

(15)

*l**** #:#o'F (16)

Velocity

I

I

(17)

(18)
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where o, :# .#{tr--J990,$trs:

Boundary Conditions

The boundary conditions arE stokes'no'slip

condition at the *"ili "t the.-spheree' whlle

li"in"-'"q*ti-ii.r pi"n" 8:'.12. and the axis

li lli.ti,t-^- o-0,-the symmetric. conditions

;;" 'i;;;;;d. The-'vortiiitv on two walls is

solved with the condit'lon oi 8 S/8 R:0' Fis'

2 shows a schematic dlagram of the boun

J"rn conditions. The inner sphere rotates

with an arbitary angular velocityt'i'(t) and tho

outer sphere is kept stationary' The angular

acciteration of the inner sphere in the spin-

up period is defined tt dt;: const. The
dt

constant is determined from a given steady ang-

ular velocity and the time step chosen in the

calculation.

sv Dv v 8v.2F ,8F- 8F

fr+ uffi+a- rs +gffi'6-in6--ffi-

ncors)-#(u *vcot0)

gz g=V

--i-o, v-Re
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deal wlth the instability of the fluid to eetimate
the criticrl Reynolds number as well as predlct-
ing the fleld. Among othsrs, there are papers

by Pearson (6) and Bartels (7) who solevd the
governing partlal dilferentlal equatione with the
finite difl€rence method. Various modes of the
flow were investlgated with dlflernt conditions.
Howevor, slnce their results are shown fol time
infinity in which the flow raaches the steady
statE, no detallod procees of forming Taylor.
gd*ter vonax has been found.

ln this study, time dependent formation
process of the Taytor-G'irtler vortex is concer.
ned for the flow liefd in sphorical gaps where

Taytor e6nier vortices are expected. ln order
to obtaln e typical case, cpaclal and physical
paramoters are chosen according to the Wimmer's
(2, oxperiments. The unsteady motion of an
incompressible viscous fluid is considered when
the inner sphero is impulsively accelerated. to
a given angular velocity. Axisymmetrlc Navier-
Stokes equations wrltten in terms of the stream
function, angular velocity function and the
vorticity are solved by means of the finite differ-
ence technlgue for tho initlally stationary flow.

BasiclEquatlonB.

Incompressible viscous hydlodynamlc equa-
tions are :

V. v:o
Dv t__DI- -7V

(1)

F*v[2v Q)

llow velocity vector
density
prgs$ur€

kinsmalic viscosity

where tD is chosen for the melidian plane in
the case of axlsymmstrio condltion.

The fluid is contained between two con-

centric spherical shells in which the inner

sphere rotates with an arbitary angular velocity
or. tn Fig.1, epherical coordinates system $,A,$)
is shown where r, is an inner radius and 4
is an outter radlus. Since the llow is axisy-

mmetlic, the velccity components can be expr6-

ssed in terms of thg stream lunction { (r, 0; t)
and the angular velocity function f,l ( r,0; t )
where Q is defined according to <D=O { r, 0; t )A

Fig.1 Sphererical coordinates system

Therefore, the velocity coulponents are as follows

where v
P

p

(5)

(6)

(7)
The vorticity vector is dstined as follows;

I-rot v 1:!xv) (3)

The velocity vector v can be written with
two ecalar function { and tD, which satisfy the
continuity equation (1) as;

v- V Q xV o

20

18+r-, _ -:_vr-T- r2sinO 80

180v0:--Etng -,j,
vut:r*n6--

The momentumn €quation (2) can be further

reduced into the vorticlty transport equation as

shown beiow:

\titg - w x (ux 6: -vVx(VxEl (S)
8t v '\\!'!r'
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1fm&o,llerence formulae of the equations (16),

;'!; dn: 13r is then given by following forms ;

(2) experinrent where Taylor-Gortler vortices
expected to form.

Table 2. Physical parameters

:- 'Fl * of r.';', F,.^i,at,o9.ag,R,o,t\
, '- 'l ' ' v ( V.-; .Vi; tt.aR ao R o.t )

I " t'0.5.',f t pe.s

(20)

(21)

{22)

urMs Fl* means residual of the finite difference

rsua:ion and B is a over relaxatiion factor. lt is

moi!: that n is a number of time step and I is a

1lrJ*)ei of iteration.

Tne voiticity at ths walls inf luences thc whole

rc i.,ltirn in the f low domain. ln this study, Jens-

"-t 
s fi'rnlla of second order of accuracy is used

r :r; rvith Schauf (5).

=ZZhu-f7 St,i - 8 52,; -S3,; I+o(AR2)

(23)

i;cur'3cy, stability and convergence of the solu-

: 3'1s are very much aftected by a choice of [R,
" :" \t. In the present studv, these paramenters

a? Cetermined trom actual runs of computer pro-

g,-rn in order to meet sufficient accuracy, stabil-
':r snd speed of convergence of the solutions.

The parameters used in the numerical calucula-

tjon are showen in Table. 1.

Table 1. Numerical Parameters

Radius of inner sphero

Radius of outer sphere

Gap ratio

Kinematic viscousity

t;0.072 (mt

12=0.080 (ru)

o=0.1

v=1.21v.10a 1m2/s)

Number of division for R : M:16

Number of divlsion for 0 ; N=91

Time step : At-0.111

Step lengthforR : IR=0.00667
Steplengthfor0 :[0=0'0175
Over relaxation tactor : B=.|.4

The physical parameters used in the calucul-

ation are also shown in Table 2. The value of

rhese paranieters are mainly quoted from wimmer's
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The calculations are carried out with a cornp'

uter HITAC-M2BOH in Doshisha University com-

puter centle.

Results and Discussions

The computatlon was carried out for the steady

Reynolds number of 2000, lt is noted here that

the criticat Reynolds number for o=0'1 is approx-

imately 1200 aucording to Bertles (3)' ln the

present study, therefote, it is assumed Re=2000

for which a steady pair of Taylor-Gortler vortices

are expected.

ln Fig. 4 the results of the calculation are sho-

wn for the stream function, the contour linos of

the stream function against time variat'ion' where

K indicates the number of time step after the cal-

culation started at K=0 (t:e sec.)' At early stage

K=1, immediately after accelarated front the rest'

the flow contained latge cell ranging from the

pole to equator. This is the secondary flow mo-

tion against the basic main flow' The two bou-

ndary layers, the inner one at the rotating sphere

and the outsr ono at the stationary sphele, app-

ear in the gap. lt is seen from Fig' 4 for K=l

that the inner boundary layer, in which the mer-

idional velocity component is almost paralell to

the surface and thc f low is directed lrom the pole

to the equator, is thinner than the outer one' This

{low mode is also obsetved for low Reynolds nu-

mber, which is well below the critieal value' in

the experimental studies (2) and (3)'
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The boundary conditions in Flg.
arized below for (a) to (d).

Fig,2 Boundary conditions

(a) n-t. oqoq|
S:0
F:O

ln order to solve the equations (15)-(181 wittt
the boundary conditions given above, the equa-

tions are discretized by central differences of
second order. The do-main of solution consists

of equally divided finite difterence meshes, as

shown in Fig. 3.

o'{

Fig. 3 Finite diference mesh

R:7{- t A R

6::7\0
1:nIt

where

A R-- --M?
/\r0=5

2(N -1)

Three points approximation formula is used for

derivatives appeared in the equations (15-18), in

which the truncated error occured in the calcul-

ation is of otder 0 tAt2, AR2. [02; For the equ-

ations (16) and (17) which include time deriva-

tives, the implicit solution technique with the

mettroci used by Peaceman and Bachford 110) is

adopted so as to obtain fast convergence and

stability of the solutions' On the other hand' for

the elliptic type of the equation (18) the success-

ive over relaxaticn method is used' These meth-

ods used in the present study are described else-

where in the refetences (6), (7) and (8)' The

2 ate summe

t;#

V: 8'l
8R2,

(b) R=y. 0<u<+
S*0

*
F=or, (l) y2sin20

82S 85- gR2' gR

(c) O=O,t LR Z_1

S=0
F-0
V:0

(d) s: +, r( R (1

S=0

lF =od0
v=0
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As time lapses K=55 (t=6. 11 sec), on the su'
rface of sphele near the equator 0880o, the mer-

idional uetocity decrease in this ragtion' The bou'

ndary layer in this teglon ls thus grown because

the merdionaI mass flux ls transported" into ths

tayer near the wall. The velocity distributions in

K=l
TIHt=0,11 Sec

l(=57

TIHE=6.33 
rsec

1l Sec

K=100

TIHE=11,11 Sec.

K"56
TiHE=6.22 Sec

t(:200
T I HE = 22_-22 Sec '

Fig" 4 Stream function conlour lines Re:2000, o=0.1 and At=0.11 sec!
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(25)

this reglon at0:81o are shown in Fig 5. ln Fig. 5.

(a) shows the meridional velocity and (b) shows
the oircumferent;al velocity as definad below :

of independent cells occupy the gep space near
the equator.

The shape of Taylor-Gbrtler vortox isalmoet
square who;s sizs is nearly equal t) the gap

size, although in Fig. 4, some scaling against
the radius was done in order to show the vortices
clearly. This shape of the vortices are also
observed from the experimental studles of Wim-
rner (2) and Nakabayshi (3)"

After fornration of Taylor-Gd'rfler vorties in
the gap, the configuration of the vortices are
almost $sttled with the passago of time" although

Ftv,o,t)vsino
It is lroted that in Fig. 5, u has positve value

for the direction of increasing R and w has pos-

itive va'u's for the direction of rotation of ths
inner sphere. As shown in Fig.5 (a) for K:55

\

FIg. 5 Velocity distribution ( 0:g1o )

anC 56 the decrease of the meridional velocity is
obvious. lt is though that in this region at K--bb,
rhe flow condition is similar to thet in the llow
Cong a concave curved wall where the boundary
kyer is unstably stratified. Then on the next
i'nstant K=56, a very weak oddy motion of a small
kedependent vortex appears in the inner boundary
ridyer. This vortex grows and moves toward cen-
tr of the gap, causing the separation of the bou-
clery layer. At K=57 as shown in, Fig 4. a pair

Ucch, Engg. Res, Bull, Vol, 10, (1987)

sorne movement of the vortices is lound. This
is shown in Fig. 5 ta) where the velocity u

at K:100 and K:200 are different due to
shifting of the cell. This motion might be
caused by the Coriolis force physically and from
a view point of numerical calculation ths 6olu-
tion of the eqr.lations are still developing.

ln rhe present 6tudy, qualitative agreement
has been reached with the results obtained by

Wimmer Q) and Nakabayashi (3). However,
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in the nature of the flow situation the llow
is generally three-dimensional 60 thatthe solu-

tion must be obtained in a symmetric breaking

situation. Particularly, this is inrportant for large

gap size. Furthermore, the heat dissipation may

be included in the calculation to simulate more

general situations. These are oul of scopo in

tha presant case and further study should be

necsssary.

Gonclusion
A viscous incompressible fluid contained

between two concentrlc sphore, where the inner

one rotates and the outer one is statlonary, is

investigated. The solutions ol the axisymmetlic
Navier-Stokes equations are obtained by using

finite dilfernce method, and the results show

ths formation process of Taylor-G6rtler vortex.

Oualitaive agreement has been reached with the

experimental studies conducted by former lesea'

rchers. Jt is revealed that Taylor-Gortler vortex

appears immdiately after the formation of a week
vortex in the boundary layer adjacent to the inner
sphere wall.
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