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ABSTRACT

In the present investigatiott a two-dimensional low speed flutter moclel (aerofoil section NAca 23012) has
been designed. [t was .fabricatecl -from Indian Teak Wood.

The two'dimensional flutter stability determinant was deiduced on the basis of Lagrange,s equations for vibra-
tion of a flutter system having two degrees of freedom in an uir stream. The:odorsen's tisl and error method
was used to solve the two equations obtained from the flfiter stability determinant. The position of the elastic
axis was changed.fnr a number of times. For each position of the elastic axis, dffirent yalues ofthe reduced
velocity (Ifk) were assumed and the corresponding roots (xl oJ' the equafions were compnted. The roots wete
plotted agdinst the various assumed values of the reduced velbcities and two curves were obtained. The point
of intersection af the two curves gave the values of llk :3.25 and x:1.36. From these two values, the flutter
speed was directly calculated to be 94.4 ftfsec. All compwnfioos were carrie:d out on the Ferranti Sirius Compu-
ter- The flutter nrcrlel v'ot experirnentally t:sted in a srl)sorric ,riwl trtnnel ancl rhe flttler speerl wss observed to be
9).6 ft!sec.
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(b.xa)

axis location
semi-chorcl
distance between elastic axis and mid-
chord point, positive aft of mid'chord.
distance between c.g. and elastic axis,
positive when the c.g. is aft of the elas-
tic axis.

distance measured along a direction
perpendicular to x.

mass moment of inertia per unit span

about axis x:b.a from rnid-chord.

angular deflection about elastic axis,
positive when the leading edge is up.
unit imaginary number"
reduced frequency

reduced velocity
equivalent spring constant in bending
per unit span

equivalent spring constant ia torsion
per unit span.

mass per unit span

total mass
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p:m/(ttpbz) densitY raticr
p density of air at sea level

r4 climensionless radius erf gyration, defineci

as rd: \/T;@r)
Sa:m.b.xa static mass roornorrt per unit span aborit

axis x:ba, positive when c.g. is aft.
U the approach velocity
UF the flutter velocity
UD the divergence speed

"o:56gi(mb) 
the dimensiontress static unbalance

a:1roa/oi)2 where o is defined as h:Eoei*tand
4:do'eiwt

^ 
n: \/ Ko . uncoupled natural torsional frequency

o6: y'K6lm uncoupled natural bending frequency.

Introduction:

The flutter phenomenon is an aeroelastic, self-sus-

tained excitation in which the external source of energy

is tbe airstream. The air stream feeds energy inta
the system by virtue of its position or configuration
as it is dissipated rapidly by darnping. Flutter has per-

haps the most far-reaching effects of all the aeroelas-

tic phenomeRa on the design of high speed aircrafts.
Modern aircrafts are subjected to rnany kinds of
flutter phenomena. The classical type of flutter is

associated with potential flow and usually, but not
necessarily, involves the coupling of two or more

degrees of freedom. The non-classical type of flutter
which has so far been difficult to analyse on a purety

theoretical basis, may involve separated flow, periodic

break away and reattachment of the flow, stalling
conditions, and various time lag effects betrvcen the

aerodynamie forces and the motion.
A theory of wing load distributiou and wing diver-

gence was first presented in 1926 by Reissner tll.
A theory of ioss of lateral control anct aileron re-

versal was published six years later by Cox and

Pugsley [2]. The mechanism of potential flow flutter
was understood suffhciently wetl for design use by

1935, largely through the early efforts of Glauert [3],
Frazer and Duncan [4], Kussner [5] and Theodorsen

t6l. Very recently, Binder [7] carried out investiga-

tions on the flutter or galloping of certain structures

in a fluid stream. Rao & Chopra [8] have developed

a low speed flutter model of a typical wing. Some

of the latest contributions to this problem arc due

to Bisphlinghoff[9].
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l'HE TWO DIMENSIOT{AL FLUTTER STABITITY
I)ETERMINANT AND ITS SOLUTION.

'fhe flutter can be reduced to two basic problems:
tirc mechanical and the aerodynamic. The first invol-
ves the consideration of the motion ol the entire air-
plane structure as a continuous vibrating system

acted on by external air forces and internal damping.
The problern then reduces to one of writing the

equation of motion fcrr such a system. The second

basic problern is tirat of determining the nature cf
the aerodynamic forces involved. These f'orces ar€

independent of the static forces which maintain the

system in an equilibriunr position. The oscillatorl'
aerodynamic forces are tliose which tend to matntain
oscillations about the equilibrium position. Only these

aerodynamic forces are considered in the derivation
of the equations of the oscillatory motions"

In tire following approach, instead of actual distri-
buted mass and geometrical properties of the wing.
that of the wing per unit span at some representative
position is considered. Thus an approximate represen-
tation of the flutter condition for a non-uniform wing
of finite aspect ratio has been obtained by consider-

ing the motion of this raprosentativc unit span. This
approach is termed as the two dimensional flutter
problem. It should also be noted that the actual
motion of the system is asssumed to be a combina-
tion of fundamental wing torsion i.e. analysis is done

for tlvo degree bending and torsion. Figure I sholvs

* 
ti.*".,

FtA, I lho Co -ordinorr..sl.cl.rt oastciale.
. rrf^ lh. ..?cl6il

Engg. Res. Bull., Val. I {1978), Na. IMech.



the location of the crordinate system along with
some quantities of primary aerodynarnic interest. Lag-
range's equation [9] may be used. to derive the free
vibrafion equations for this representative section. IJ.
the thin aerofoil is subjectec! to a distritrution of

, pressure differencs ip,-pr) because of the air florving
past it, we nrust include gener*lired externar fnrces in
the equatiorrs ol' rnotion :

a, we aiiow for this by letting oile or both of the
amplitucles r" ano ,r. b" 

"o-plex numbers. rf the time
origin is choseu so as to make f,o real, the angle by
which a leads h is dcfinsd in eqn (6) as /, ilrc argument

of ;.
The assumptiorr of sinple harmonic rnotiorr changes

eqns (1 & 2) to ;

1t'

ni'*5*i'-t-ma)rz(= e6
t{o *i**,-;d 4 qd

where the ternls on the left hand side are that for
mechanical and inertial forces and tbe terms on the
right hand sicle are that ftrraerodynamieforces. e6 and
Qa are the aerodynamic lift & the aerodynamic moment
about x-ba as given below:

-ib
Qr - 1' 

(n, -Rri dx : - L t3ij;
+b

Qo: f
Jrro' --p1) (x-ba) dx :tu{" (4i

Here L aud M, are thE running lift and the runniirg
moment respectively,, and are functions of time.

The standard scheme of flutter analysis resembles
the one for free vibrations in that we specifl, sim_ple harmonie motion in advance lrv s*tting

h: hl.*itt

-. (t)
" --- (z)

- at'sl -.'{ i + z.ti at( , *,
-,ots.l -,i'a** *,^' T.'' ")

Gt

The aerodynamic expressions for L arid Mo f*r ros,speed flow may ge raken fr,rm r*r"r*o"*'i-l;: ,"-' 
lurl

, = -rr/l3 rt'f t, lu *{ rr- I (t, + 4 lx j :9,t

in
t4, = 17/"'{f nt -L( (t;.4,$, +7V.{4+ae;(i,n)t:.1",*^.fJ* :' (,g

where Ln, La anci Me are functions of the reduced

lle_Ouencv 
k only, Mx is just -$ for the incompressible case.

Substituting eqns (9 & l0) ilnto eqns (7 & g), and rJivi-
ding by;ipb3co2s;*t and z,3baar2si*t 

-*" 
get the d"irnension-

less flutter eqns as firllows :

* f 7.[ - { J*, 
^ 

1- + ft#. * s,. - J^ 6,-2t] I . .',,, .r,,;
.a, \ br' '
-.1'l* ,";,[+-L^o,*Ei"r"{{ ,7, r- ?i} * i

tt -(r^+t 1(1;+n")+ 
.tu 

(+-*o.\" I : c - (o.)

Sinee eqns (ll) & (12) are homogeneous, rrley coits_
titute an algebraic eigen value u'ith finite solution-c
occuring at those combinatioas of speed anrJ frequencv
for rvfuish tlre eharacteristic determinant vanishes :

C{.-

This compleli representation is justified because the
linearity of the equations of motion and the aerody-na-
mic theories to be employed shows that all independent
variables in the problem contain time only as the
factor ei*t. We tacitly agree that the actual quantiries
are always found by taking the real parts of their com-
plex counterparts, recognizing that the algebraic simpli-
fication achieved by complex notation outweighs any
loss of physical claritl'. Since phase shifts in the aero-
dynamic loads produce a phase difference betrveen h and
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p(
a

i{o:e+#) : iest'.€ = do e

(5)

-"(e) I* 3 l:o
whcre A,B,D,E are defined as follows:

A.trli- S ri|"ro (,ahr. q
B " /n X. * La - L. ( l+a') (rst

D " ,"a *-*t- L1n (a-+-,*) - fi6)

f 'ro I' fr- #1" & -fu."{)/{.!+r..{.1t.,r' ,',ri

The detcrminant given by eqn (13) is known as the two
dimensional flutter stability detcrminant. Theoclorsen,s
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method for solving the aborie determinant rnay be deserj.-

bed as foliows. The aerodyrramic co-efffrc.ients Ls, L*, Mrc

etc. in thc flutter determinant are complex numbers scr

that after expansion of the deterninant, both real and

imaginary parts of thq equation should separately vanish,
'Ihis gives two independeirt equations. Theodorsen's

rrrethod of solution is essentially a trial anci error method
for deterinining the value of lik and co2 u,hich causes

both real anci imaginary r*ots of the cquation t.r
vanish simultaneously. If the flutter determinant is expar-
ded and set equal to zeto, an equation ofthe following
form is obtained :

4"-i-Crxo-t-iCzx1-x-;- :Co:0.'.. {iB}
r+'hers e; is a complex coeffici,e*t whieh c:rn lre e.rpressed

as:
C;:R;-1-ili
and thc variable g-Eoz,,cr)2 is a real quaniity. Hence
the above equa.tion ean be expressed as tw{} simultaneous
equations of the lbllorving form :

Now that the values of x and l/k are tound out,
one c3n casily calculate the flutter speed by employ-
ing the rvcll knorvn formula (see ref. 9):

(21)

Design of the Model :

Aerofoil Section r NACA 23012

Material : Irrdian Teak Wood
Density of Teak Wood : 48 Lbsicu. ft.
Chord length of the model : C:6 inches
Area of the aeroloil section : Ct.08075 C:
C.G. frorn the leading edge

; 0..12C

: Ir.r. :186.11 xlo -aCa

Various positions of elastic axis were taken viz., at
27yoc, 30yoc,32yoc aad 35/oC from th': leading edge,
and for each position quantities like ;.r., xa, tuz, (*+a)
and (<.r6/o:a)2 were computed. These were then subs-
tituted in the flutter determinant for different (assumed)
values of l/k to solve for flutter speed and flutter
frequency. [t rvas seen that for thc case of elastic axis
at 27d/oc, both the real roots exceed the imaginary
root at some value of lik in between 3.000 & 3.330.
From the graph (see figure 3.) at r:1.36 and l/k:
3.25 both the equations are found to be satisfied.
Therefore, we have

:b-: r

b<,r k

of aerofoil
Area moment ol inertia

xo .i-R1xn*!rR2xn-r -;. .

Ilxa-li-I2x8-2+ .. . . ..
(le)
(20)

-i-R"'-0
-lrIo:0

If x. is a positive root o[ equ (19) and xi is a
positive roct of eqn (20) for any assumeil value of
lik, then by choosing a rumber of vaiues ol llk and
plotting the roots of the equations (19) & (20) vs. llk,
two continuous curves of x, vs l/k and x; vs lik are

obtained. An intersection of the two curves determines

the r:alue of lik and x for which eqns (19&20; r'anish

simultaneously" A typical plot is shorvn in figure 2.

xc xl

x .= 1.36
: (oe/or):

ELASII' rI:3
eeaur!oN\ t/t ?40 / _.€,

Ft$.2, A lypr.et p!o! tar ih?
/lullt. Cet.rminart

F'a. t.
SOLI)IrcN AF FLI)I1EP DEIERX'NAIII.
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But for the case of elastic axis at 21o/"e; G)!c

rad/sec.

Therefore, o: I 16 rad/sec.
Now, l/k:Url(bor) :3.25
.'.Un == 94.4 ft/sec.

The Experiment :

The width of the lorv speed rvind tunnel'used for
this experiment was two feet. But the span of the
model actually tested was one and a half {'cet. The
design essentially being a two dimensional one, to
avoid tip effects another enclosure was designed and
placed in the side of the test section. Eight springs,
four on each side, were attached to the model at the
predetermined points and the model was suspended
inside the enclosure (figurc 4).

/, sliltncss ol aach sc.rino x 4 lS lbtn./\

FtG. 1.

A 't J"tR€€. DtttENS|ONLL VtE'' (

OF'f IIE E'PERII'IENIAI sET UP.

After positioning and suspending the model, the

rvind tuanel was started. The air speed was graduall_v

increased until the model was blown awar'" The flutter

I{ech. Engg. Res. Bull., Vol. I (1978), No. I

:135.4 speed rvas recorded to be 92.6ft/sec. The experiment
was repeated for a number of times using new springs

(hal'ing the same spring constant) each time. Almost
the same flutter spccd rvas otrst:ried every time'

Conclusions
The results obtained frorn computation arrd experi-

rnent \l"ere as follows l

The Computational Result: Ur:Flutfer Speed: 94'4

Itlsee.

The Experimental Result : UF: Flutter Speed:,92.6
ft'sec.

Hence the design flutter speed agreed quite c-losely

rvlth the experimental one.

It must be noted that the flutter speed rl'as com-
puted for a model of span 2 ft. But the model ac-

tually tested had a span ol 1.5 ft. This loss in rnass

iiad been compensated for by thc alurninium end-
plates (figure 5). rHence the experimental result did
not depart rvidoly lrom thr- tlreoretical one.

Figure 5: The experimeutal set-up

Onc should note ihe iiue of dernarcation berrveen
rhc flutter of alr aircraft rving irr actual tiight and
rhe flutter in our experiment. The forrner represerits

three dimensional flutter whereas the latter represents

a two dirrrensional flutter. In the former case the wing
itseif is an elastic structure, but in the present experi-
rnent tire model as such is a rigid structure. That is

rvhy springs were attached to provide elasticsty to the
model.

In tlre actual flutter phenomenon, some special

external excitation such as a gust is necessary pri'-.r to
the onset of oscillations of increasing amplitude. But
in the present investigation, flutter was encountered
without aey external disturbance being given to tlre

-l ,l
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systenr. This carr be explained in tlre light of Kussncr
theory (10) which shows that at low amplitude the laws

of potential flow do not hold becausc the viscosity of
the air is not negligible. Consequently, the aerodynamic
forces, for the case of very small oscillations, are smaller

than would be expected from potential flow theory,
and, therefore, do not induce flutter. Thus due to boun-
dary layer effect, it would take a disturbance of certain
minimum value to start flutter.
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