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ABSTRACT

In the_ present investigation a  two-dimensional low speed Sfutter model (aerofoil section NACA 23012) has
been designed. It was fabricated from Indian Teak Wood. :

The two-dimensional flutter stability determinant was deduced on the basis of Lagrange’s equations for vibra-
tion of a flutter system having two degrees of freedom in an air stream. T, heodorsen’s trigl and error method
was used to solve the two equations obtained from the flutter stability determinant. The position of the elastic
axis was changed for a number of = times. For each position of the elastic axis, different values of the reduced
velocity (1/k) were assumed and the corresponding roots (x) of the equations were computed. The roots were
plotted against the various assumed values of the reduced velocities and two curves were obtained. The point
of intersect'on of the two curves gave the values of 1lk =3.25 and x=1.36. From these two values, the flutter
speed was directly calculated to be 94.4 ft[sec. All computatioos were carried out on the Ferranti Sirius Compu-
ter. The flutter model was experimentally t :sted in a subsonic wind ‘tumnel and the flutter speed was observed to be
92.6 ft/sec. il o

Nomenclature

a axis location - = s angular deflection about elastic axis,

b semi-chord : . positive when the leading edge is up.

a.b distance between elastic axis and mid- g ean L imaginary number.
chord point, positive aft of mid-chord. . k=(b.)/U_ reduced frequency

(b.x2) dist'a..nce between c.g. :?.nd elastic axis, 1 [k#ﬁf(b mj'» re by
p‘osmw./e PR Ce b el i el e Ky B equivalent spring constant in bending
atee o per unit span

h distance measured along a direction © Ke . . equivalent spring constant in torsion
perpendicular to x. s per unit span.

2 mass moment of inertia per un‘t span m mass per unit span

) about axis x=b.a from mid-chord. M total mass
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p=m/(xpb?) density ratio
e density of air at sea level
ra dimensionless radius of gyration, defined
as ra=1/la/(mb?)

static mass moment per unit span about
axis x=ba, positive when c.g. is aft.

U the approach velocity

Uz the flutter velocity

Up the divergence speed
Xa=Se/(mb) the dimensionless static unbalance

Sa=m.b.x«

x=(wa/w)? where o is defined as h=h,ei*t and
oc.:o::,.eiwt

wa=1/Ko/Tz uncoupled natural torsional frequency

oy=4/Ky/m uncoupled natural bending frequency.

Introduction:

The flutter phenomenon is an aeroelastic, self-sus-
tained excitation in which the external source of energy
is the airstream. The air stream feeds energy into
the system by virtue of its position or configuration
as it is dissipated rapidly by damping. Flutter has per-
haps the most far-reaching effects of all the aeroelas-
tic phenomena on the design of high speed aircrafts.
Modern aircrafts are subjected to many kinds of
flutter phenomena. The classical type of flutter is
associated with potential flow and wusually, but not
necessarily, involves the coupling of two or more
degrees of freedom. The non-classical type of flutter
which has so far been difficult to analyse on a purely
theoretical basis, may involve separated flow, periodic
break away and reattachment of the flow, stalling
conditions, and various time lag effects between the
aerodynamic forces and the motion.

A theory of wing load distribution and wing diver-
gence was first presented in 1926 by Reissner [1].
A theory of loss of lateral control and aileron re-
versal was published six years later by Cox and
Pugsley [2]. The mechanism of potential flow flutter
was understood sufficiently well for design use by
1935, largely through the early efforts of Glauert [3],
Frazer and Duncan [4], Kussner [5] and = Theodorsen
[6]. Very recently, Binder [7] carried out investiga-
tions on the flutter or galloping of certain structures
in a fluid stream. Rao & Chopra [8] have developed
a low speed flutter model of a typical wing. Some
of the latest contributions to this problem are due
to Bisphlinghoff [9].
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THE TWO DIMENSIONAL FLUTTER STABILITY
DETERMINANT AND ITS SOLUTION.

The flutter can be reduced to two basic problems:
the mechanical and the aerodynamic. The first invol-
ves the consideration of the motion of the entire air-
plane structure as a continuous vibrating system
acted on by external air forces and internal damping.
The problem then reduces to one of writing the
equation of motion for such a system. The second
basic problem is that of determining the nature of
the aerodynamic forces involved. These forces are
independent of the static forces which maintain the
system in an equilibrium position. The oscillatory
aerodynamic forces are those which tend to mamntain
oscillations about the equilibrium position. Only these
aerodynamic forces are considered in the derivation
of the equations of the oscillatory motions.

In the following approach, instead of actual distri-
buted mass and geometrical properties of the wing,
that of the wing per unit span at some representative
position is considered. Thus an approximate represen-
tation of the flutter condition for a non-uniform wing
of finite aspect ratio has been obtained by consider-
ing the motion of this representative unit span. This
approach is termed as the two dimensional flutter
problem. It should also be noted that the actual
motion of the system is asssumed to be a combina-
tion of fundamental wing torsion i.e. analysis is done
for two degree bending and torsion. Figure I shows
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the location of the co-ordinate system along with
some quantitics of primary aerodynamic interest. Lag-
range’s equation [9] may be used to derive the free
vibration equations for this representative section. If
the thin aerofoil is subjected to a distribution of

» pressure difference (p,-p;) because of the air flowing
past it, we must include generalised external forces in
the equations of motion :

i)
S - (2)

N i 2
ME + 5K +7 L= @,
S+ K+ 0 - %

where the terms on the left hand side are that for
mechanical and inertial forces and the terms on the
right hand side are that for aerodynamic forces. Q, and
Qu are the aerodynamic lift & the aerodynamic moment
about x=ba as given below:

+b
Qn = f (Pu—phdx = -L (3)
<h
+b
Qu = f
b(pu —P1) (x—ba) dx =M, (4)

Here L and M, are the running lift and the running
moment respectively, and are functions of time.

The standard scheme of flutter analysis resembles
the one for free vibrations in that we specify sim-
ple harmonic motion in advance by setting

ot
h =g, ¢®
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This complex representation is justified because the
linearity of the equations of motion and the aerodyna-
mic theories to be employed shows that all independent
variables in the problem contain time only as the
factor ei™. We facitly agree that the actual quantities
are always found by taking the real parts of their com-
plex counterparts, recognizing that the algebraic simpli-
fication achieved by complex notation outweighs any
loss of physical clarity. Since phase shifts in the aero-
dynamic loads produce a phase difference between h and

Mech. Engg. Res. Bull., Vol. 1 (1978), No. I

%, we allow for this by letting one or both of the
amplitudes _l—lo and ;.“o be complex numbers. If the time

origin is chosen so as to make Eo real, the angle by
which « leads h is defined in eqn (6) as ¢, the argument

of o—c:,
The assumption
eqns (1 & 2) to ;

»

of simple harmonic motion changes

3 2 & = -
_uwf—w{£+a)4 Lo PR - (‘;)
N {87}

-wﬂg{'*}‘fx“&“il L. 7
The aerodynamic expressions for L and M, for low
speed flow may be taken from reference (9) as :
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where L;, Luand Mz are functions of the reduced
frequency k only, M, is just J for the incompressible case.
Substituting eqns (9 & 10) into eqns (7 & 8), and divi-
ding by =pb3w2%i™ and mpbw2ei™ we get the dimension-
less flutter eqns as follows -
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Since eqns (11) & (12) are homogeneous, they cons-
titute an algebraic eigen value with finite solutions
occuring at those combinations of speed and frequency
for which the characteristic determinant vanishes

A B :
D E,=0...,.......,......(L:))
where A,B,D.E are defined as follows:

gsal ot ohie ()
ol
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B:/X‘_J_L‘_‘_{(i*d) Cl s )
- el

D:/({(+J£-Lh (4+2)
Ezp " O- SE )M -(Lr)ard) st (xoed 19)

The determinant given by eqn (13) is known as the two
dimensional flutter stability determinant. Theodorsen’s
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method for solving the above determinant may be descri-
bed as follows. The aerodynamic co-efficients Ly, Lx, M«
etc. in the flutter determinant are complex numbers so
that after expansion of the. determinant, both real and
imaginary parts of the equation should separately vanish.
This gives two independent equations. Theodorsen’s
method of solution is essentially a trial and error method
for determining the value of 1/k and w2 which causes
both real and imaginary roots of the equation to

vanish simultaneously. If the flutter determinant is expan-
ded and set equal to zero, an equation of the following

form is obtained :
ATl e +Ca=0 .. .. (18)
where C; is a complex coefficient which can be - expressed
as:
C]=Rl-—;—lL, . A
and the variable x=(wu/w)? is a real quantity. Hence
the above equation can be expressed as two simultaneous
equations of the following form :
XBERx®LLRxM 2L L +R,=0
len‘“l%—lzx"_z%— +Iu:0
If x, is a positive root of eqn (19) and x; is a
positive root of eqn (20) for any assumed value of
1/k, then by choosing a number of valuzs of 1/k and
plotting the roots of the equations (19) & (20) vs. 1/k,
two continuous curves of x. vs 1/k and x; vs 1/k are
obtained. An intersection of the two curves determines
the value of 1/k and x for which eqns (19&20) vanish
simultaneously. A typical plot is shown in figure 2.
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FIGTZ. A typiccl plot for the Soluticn of the
flutter determinant :
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Now that the values of x and 1/k are found out,
one can easily calculate the flutter speed by employ-
ing the well known formula (see ref. 9):

o
bw _* k (21)

Design of the Model :

NACA 23012
Indian Teak Wood
48 Lbs/cu, ft.

C=6 inches

0.08075 C2

Aerofoil Section

Material

Density of Teak Wood
Chord length of the model :
Area of the aerofoil section :
C.G. from the leading edge
of aerofoil )
Area moment of inertia

0.42C R
Ip.p. =186.11 x10 —4C*

Various positions of elastic axis were taken viz.,, ‘at
27%C, 30%C, 32%C and 35%C from th: leading edge,
and for each position quantities like u, X, ra?, (3+a)
and (op/wx)? were computed. These were then subs-
tituted in the flutter determinant for different (assumed)
values of I/k to solve for flutter speed and flutter
frequency. It was seen that for the case of elastic axis
at 27%C, both the real roots exceed the imaginary
root at some value of 1/k in between 3.000 & 3.330.
From the graph (see figure 3.) at x=1.36 and 1/k=

3.25 both the equations are found to be satisfied.
Therefore, we have
X =i1.36
= (0a/0)?
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But for the case of elastic axis at 279%C; wz =1354
rad/sec.

Therefore, w= 116 rad/sec.

Now, 1/k =Ug/(be) =3.25

. Up = 944 ftfsec.

The Experiment :

The width of the low speed wind tunnel used for
this experiment was two feet. But the span of the
model actually tested was one and a half feet. The
design essentially being a two dimensional one, to
avoid tip effects another enclosure was designed and
placed in the side of the test section. FEight springs,
four on each side, were attached to the model at the
predetermined points and the model was suspended
inside the enclosure (figure 4).

Stiffness of each spring = 435 18/ :n.

ElGH %
A _THREE DIMENSIONAL VIEW

QF THE _EXPERIMENTAL SET UP.

After positioning and suspending the model, the
wind tunnel was started. The air speed was gradually
increased until the model was blown away. The flutter
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speed was recorded to be 92.6 ft/sec. The experiment
was repeated for a number of times using new springs
(having the same spring constant) each time. Almost
the same flutter spead was observed every time.

Conclusions |
The results obtained from computation and experi-

ment were as follows : sl

The Computational Result: Ug=Flutter Speed== 94.4
ft/see.

The Experimental Result : Ug=
ft/sec.

Flutter Speed =92.6

Hence the design‘ flutter speed agreed quite closely
wlth the experimental one.

It must be noted that the fiutter speed was com-
puted for a model of span 2 ft. But the model ac-
tually tested had a span of 1.5 ft. This loss in mass
had been compensated for by the aluminium end-
plates (figure 5). /Hence the experimental result did
not depart widely from the theoretical ons,

Figure 5: The experimental set-up

One should note the line of demarcation between
the flutter of an aircraft wing in actual flight and
the flutter in our experiment. The former represents
three dimensional flutter whereas the latter represents
a two dimensional flutter. In the former case the wing
itsell is an elastic structure, but in the present experi-
ment the model as such is a rigid structure. That is
why springs were attached to provide elasticsty to the
model.

In the actual flutter phenomenon, some
external excitation such as a gust is necessary prior to
the onset of oscillations of increasing amplitude. But
in the present investigation, flutter was encountered
without any external disturbance being given to the

special
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systemr. This can be explained in the light of Kussner
theory (10) which shows that at low amplitude the laws
of potential flow do not hold because the viscosity of
the air is not negligible. Consequently, the aerodynamic
forces, for the case of very small oscillations, are smaller
than would be expected from potential flow theory,
and, therefore, do not induce flutter. Thus due to boun-
dary layer effect, it would take a disturbance of certain
minimum value to start flufter.
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